Vertex-graceful labelings for some double cycles

Wai Chee SHIU

Department of Mathematics
Hong Kong Baptist University.
June 28, 2011
Let $G = (V, E)$ be a graph with p vertices and q edges.

G is said to be vertex-graceful if there exists a bijection $f : V(G) \rightarrow \{1, 2, \ldots, p\}$ such that the induced labeling $f^+ : E(G) \rightarrow \mathbb{Z}_q$ defined by $f^+(uv) \equiv f(u) + f(v) \pmod{q}$, for each edge uv, is a bijection.
Vertex-graceful

Let $G = (V, E)$ be a graph with p vertices and q edges.

G is said to be vertex-graceful if there exists a bijection $f : V(G) \rightarrow \{1, 2, \ldots, p\}$ such that the induced labeling $f^+ : E(G) \rightarrow \mathbb{Z}_q$ defined by $f^+(uv) \equiv f(u) + f(v) \pmod{q}$, for each edge uv, is a bijection.

f is called a vertex-graceful labeling of G.

This concept were first introduced by Lee, Pan and Tsai in 2005.
Another induced labeling $f^* : E(G) \rightarrow \mathbb{N}$ defined by $f^*(uv) = f(u) + f(v)$. If $f^*(E(G))$ consists of consecutive integers, then f is called a strong vertex-graceful labeling. And G is called strong vertex-graceful.

Acharya and Hegde, in 1991, called a strong vertex-graceful graph as strongly s-indexable graph, where s is the minimum value of the mapping f^*. It will be introduced later.
Total edge-magic

G is said to be **total edge magic** if there a bijection
$f : V(G) \cup E(G) \rightarrow \{1, 2, \ldots, p + q\}$ such that
$f(u) + f(uv) + f(v)$ is a constant, for each edge uv.
The study of total edge-magic graphs is initially introduced by Kotzig and Rosa in 1970. They called
the total edge magic graph as magic graph.
Total edge-magic

G is said to be total edge magic if there a bijection $f : V(G) \cup E(G) \rightarrow \{1, 2, \ldots, p + q\}$ such that $f(u) + f(uv) + f(v)$ is a constant, for each edge uv. The study of total edge-magic graphs is initially introduced by Kotzig and Rosa in 1970. They called the total edge magic graph as magic graph.

In 1998, Enomoto et al. called a total edge-magic graph as super edge-magic if $f(V(G)) = \{1, 2, \ldots, p\}$.
A relation

Chen, in 2001, claimed (also proved by Figuero-Centeno et al. in 2001) that a graph is super edge-magic if and only if there exists a vertex labeling such that two sets $f(V(G))$ and
$$\{f(u) + f(v) \mid uv \in E(G)\}$$ are both consecutive.

So strong vertex-graceful and super edge-magic are equivalent.
There is an equivalent concept similar to strongly vertex-graceful.

For integers $s, d \geq 1$, a (p, q)-graph G is called strongly (s, d)-indexable if there is a bijection $f : V(G) \rightarrow \{0, 1, \ldots, p - 1\}$ such that the induced map $f^* : E(G) \rightarrow \{s, s + d, s + 2d, \ldots, s + (q - 1)d\}$ is bijective, where $f^*(uv) = f(u) + f(v)$ for $uv \in E(G)$.
There is an equivalent concept similar to strongly vertex-graceful. For integers $s, d \geq 1$, a (p, q)-graph G is called **strongly (s, d)-indexable** if there is a bijection $f : V(G) \rightarrow \{0, 1, \ldots, p - 1\}$ such that the induced map $f^* : E(G) \rightarrow \{s, s + d, s + 2d, \ldots, s + (q - 1)d\}$ is bijective, where $f^*(uv) = f(u) + f(v)$ for $uv \in E(G)$.

Note that if we only request that the values f^* are all distinct, then G is called **indexable**.
A \((s, 1)\)-strongly indexable graph is simply called \textbf{strongly }\(s\)-\textbf{indexable} graph, and a \((1, 1)\)-strongly indexable graph is simply called \textbf{strongly indexable} graph.
A \((s, 1)\)-strongly indexable graph is simply called **strongly \(s\)-indexable** graph, and a \((1, 1)\)-strongly indexable graph is simply called **strongly indexable** graph.

Remark: If \(f : V(G) \rightarrow \{0, 1, \ldots, p - 1\}\) is a strongly \((s, 1)\)-indexable labeling of \(G\), then \(f + 1\) is strong vertex-graceful labeling of \(G\) with minimum value \(s + 2\). Hence, **strongly \(s\)-indexable**, **strong vertex-graceful** and **super edge-magic** are equivalent.
General Properties

The following lemma was found by Enomoto et al.

Lemma 1 If a \((p, q)\)-graph is super edge-magic, then \(q \leq 2p - 3\).
The following lemma was found by Enomoto et al.

Lemma 1 *If a* (p, q)*-graph is super edge-magic, then* $q \leq 2p - 3$.

Corollary 2 *Every super edge-magic* (p, q)*-graph contains at least two vertices of degree less than 4.*
General Properties

Let f be any vertex labeling of a graph G which contains q edges. Then

$$\sum_{e \in E(G)} f^*(e) = \sum_{uv \in E(G)} (f(u) + f(v)) = \sum_{x \in V(G)} \deg(x)f(x).$$
General Properties

Let f be any vertex labeling of a graph G which contains q edges. Then

$$
\sum_{e \in E(G)} f^*(e) = \sum_{uv \in E(G)} (f(u) + f(v)) = \sum_{x \in V(G)} \deg(x) f(x).
$$

If f is a vertex-graceful, then by the above equation

$$
\sum_{x \in V(G)} \deg(x) f(x) \equiv \sum_{e \in E(G)} f^+(e) \equiv \sum_{i=1}^{q} i \equiv \frac{q(q + 1)}{2} \equiv \begin{cases}
0 & \text{if } q \text{ is odd} \\
\frac{q}{2} & \text{if } q \text{ is even}
\end{cases} \pmod{q}. \quad (1)
$$
Some Known Results

\(P_n \) is super edge-magic for \(n \geq 1 \) which was proved by Ringel and Lladó in 1996.
Some Known Results

P_n is super edge-magic for $n \geq 1$ which was proved by Ringel and Lladó in 1996.
Results of Enomoto et al. in 1998:

★ C_n is super edge-magic if and only if n is odd.
Some Known Results

P_n is super edge-magic for $n \geq 1$ which was proved by Ringel and Lladó in 1996.

Results of Enomoto et al. in 1998:

- C_n is super edge-magic if and only if n is odd.
- $K_{m,n}$ with $m \leq n$ is super edge-magic if and only if $m = 1$.
Some Known Results

R.M. Figueroa-Centeno et al. in 2001 proved that

★ The fan $F_n = P_n \lor K_1$ is super edge-magic if and only if $1 \leq n \leq 6$.
Some Known Results

R.M. Figueroa-Centeno et al. in 2001 proved that

- The fan $F_n = P_n \vee K_1$ is super edge-magic if and only if $1 \leq n \leq 6$.
- The fan F_n is edge-magic for every positive integer n.
Some Known Results

R.M. Figueroa-Centeno et al. in 2001 proved that

★ The fan $F_n = P_n \lor K_1$ is super edge-magic if and only if $1 \leq n \leq 6$.

★ The fan F_n is edge-magic for every positive integer n.

★ The ladder $L_n = P_n \times P_2$ is super edge-magic for odd n. (Also proved by Tsuchiya and Yokomura independently.)
Some Known Results

R.M. Figueroa-Centeno et al. in 2001 proved that

★ The fan $F_n = P_n \lor K_1$ is super edge-magic if and only if $1 \leq n \leq 6$.

★ The fan F_n is edge-magic for every positive integer n.

★ The ladder $L_n = P_n \times P_2$ is super edge-magic for odd n. (Also proved by Tsuchiya and Yokomura independently.)

★ The generalized prism $C_m \times P_n$ is super edge-magic if m is odd and $n \geq 2$. (Also proved by Tsuchiya and Yokomura independently.)
Some Known Results

★ $K_1 \lor K_{1,n}$ is super edge-magic for $n \geq 1$.
Some Known Results

★ $K_1 \vee K_{1,n}$ is super edge-magic for $n \geq 1$.
★ There is a connected cubic super edge-magic graph of order p if and only if $p \equiv 2 \pmod{4}$.
Some Known Results

★ $K_1 \lor K_{1,n}$ is super edge-magic for $n \geq 1$.

★ There is a connected cubic super edge-magic graph of order p if and only if $p \equiv 2 \pmod{4}$.

There are also some super edge-magic disconnected graphs.
Double cycle

Double cycle $C(m, n)$
In 2005, Lee et al. claimed without proof that
\(C(3, n) \) for \(n = 4, 6, 7, 8; \)
\(C(4, m) \) for \(m = 5, 6, 7, 9; \)
\(C(5, k) \) for \(k = 5, 6, 8, 9 \)
are not vertex-graceful.

They also showed that \(C(3, 5), C(3, 9), C(4, 4), \)
\(C(4, 8), C(5, 7) \) are strong vertex-graceful.
Theorem 3 A double cycle $C(m, n)$ is vertex-graceful only if $m + n \equiv 0 \pmod{4}$.
Necessary condition for vertex-graceful double cycle

Theorem 3 A double cycle $C(m, n)$ is vertex-graceful only if $m + n \equiv 0 \pmod{4}$.

Proof:

$$
\sum_{x \in V(G)} \deg(x)f(x) = 2f(c) + 2 \sum_{x \in V(G)} f(x) = 2f(c) + (m + n - 1)(m + n),
$$

where c is the coalesced vertex.
Theorem 3 A double cycle \(C(m, n) \) is vertex-graceful only if \(m + n \equiv 0 \pmod{4} \).

Proof:

\[
\sum_{x \in V(G)} \deg(x)f(x) = 2f(c) + 2 \sum_{x \in V(G)} f(x) \\
= 2f(c) + (m + n - 1)(m + n),
\]

where \(c \) is the coalesced vertex.

By (1) we have

\[
2f(c) \equiv \begin{cases}
0 & \text{if } m + n \text{ is odd} \\
\frac{m+n}{2} & \text{if } m + n \text{ is even}
\end{cases} \pmod{m + n}
\]
Proof

\[2f(c) \equiv \begin{cases}
0 & \text{if } m + n \text{ is odd} \\
\frac{m+n}{2} & \text{if } m + n \text{ is even.}
\end{cases} \pmod{m+n} \]

Suppose \(m + n \) is odd. Then \(f(c) \equiv 0 \pmod{m+n} \).

But it is impossible since

\[f(c) \in \{1, 2, \ldots, m + n - 1\}. \]
Proof

\[2f(c) \equiv \begin{cases}
0 & \text{if } m + n \text{ is odd} \\
\frac{m+n}{2} & \text{if } m + n \text{ is even.}
\end{cases} \pmod{m+n} \]

Suppose \(m + n \) is odd. Then \(f(c) \equiv 0 \pmod{m+n} \).

But it is impossible since \(f(c) \in \{1, 2, \ldots, m+n-1\} \).

Suppose \(m + n \) is even. Then \(4f(c) \equiv m + n \pmod{2(m+n)} \).

This implies \(m + n \equiv 0 \pmod{4} \). \(\square \)
From the proof above we can see that $f(c) = \frac{m+n}{4}$ or $\frac{3(m+n)}{4}$ for a vertex-graceful labeling of $C(m, n)$.
A remark

From the proof above we can see that \(f(c) = \frac{m+n}{4} \) or \(\frac{3(m+n)}{4} \) for a vertex-graceful labeling of \(C(m, n) \).

But these cases are equivalent. It is because that if \(f \) is a vertex-graceful labeling, then \((m + n) - f \) is also a vertex-graceful labeling. This result also holds for any strong vertex-graceful labeling of \(C(m, n) \).
Theorem 4 For $k \geq 2$, $C(3, 4k - 3)$ is strong vertex-graceful.
Proof: Let the two cycles in $C(3, 4k - 3) = (V, E)$ be $u_0 u_1 u_2 u_0$ and $v_0 v_1 \cdots v_{4k-4} v_0$, where $u_0 = v_0$.
Proof

Proof: Let the two cycles in $C(3, 4k - 3) = (V, E)$ be $u_0u_1u_2u_0$ and $v_0v_1\cdots v_{4k-4}v_0$, where $u_0 = v_0$.

Define $f : V \rightarrow \{1, 2, \ldots, 4k - 1\}$ by

- $f(v_{2i}) = k + i$ for $0 \leq i \leq 2k - 2$;
- $f(v_{2j+1}) = 3k + 1 + j$ for $0 \leq j \leq k - 2$;
- $f(v_{2j+1}) = j + 2 - k$ for $k - 1 \leq j \leq 2k - 3$;
- $f(u_1) = 3k - 1$ and $f(u_2) = 3k$.
Proof

Proof: Let the two cycles in $C(3, 4k - 3) = (V, E)$ be $u_0 u_1 u_2 u_0$ and $v_0 v_1 \cdots v_{4k-4} v_0$, where $u_0 = v_0$.

Define $f : V \rightarrow \{1, 2, \ldots, 4k - 1\}$ by

$f(v_{2i}) = k + i$ for $0 \leq i \leq 2k - 2$;

$f(v_{2j+1}) = 3k + 1 + j$ for $0 \leq j \leq k - 2$;

$f(v_{2j+1}) = j + 2 - k$ for $k - 1 \leq j \leq 2k - 3$;

$f(u_1) = 3k - 1$ and $f(u_2) = 3k$.

It is easy to see that

$\{f(v_{2i}) | 0 \leq i \leq 2k - 2\} = [k, 3k - 2]$;

$\{f(v_{2j+1}) | 0 \leq j \leq k - 2\} = [3k + 1, 4k - 1]$;

$\{f(v_{2j+1}) | k - 1 \leq j \leq 2k - 3\} = [1, k - 1]$. Thus, f is a bijection.
Proof

Also we can check that $f^*(E) = [2k, 6k - 1]$. Hence f is a strong vertex-graceful labeling of $C(3, 4k - 3)$. □
Example 1 This is the strong vertex-graceful labeling for $C(3, 13)$ constructed in the proof of Theorem 4 ($k = 4$).

- $f(v_{2i}) = k + i$ for $0 \leq i \leq 2k - 2$;
- $f(v_{2j+1}) = 3k + 1 + j$ for $0 \leq j \leq k - 2$;
- $f(v_{2j+1}) = j + 2 - k$ for $k - 1 \leq j \leq 2k - 3$;
- $f(u_1) = 3k - 1$ and $f(u_2) = 3k$.
Theorem 5 The graph $C(2n + 3, 2n + 1)$ is strong vertex-graceful for $n \geq 1$.
Proof: First we consider C_{4n+4}.

Now we want to define a labeling $f : V(C_{4n+4}) \to [1, 4n + 3]$ such that $f(x_1) = f(y_1) = n + 1$.
Proof

\[f(x_{2i+1}) = n + 1 - i, \quad 0 \leq i \leq \left\lfloor \frac{n}{2} \right\rfloor \]

\[f(x_{2i}) = 3n + 3 - i, \quad 1 \leq i \leq \left\lfloor \frac{n + 1}{2} \right\rfloor \]

\[f(y_{2i+1}) = n + 1 + i, \quad 0 \leq i \leq \left\lfloor \frac{n}{2} \right\rfloor \]

\[f(y_{2i}) = 3n + 2 + i, \quad 1 \leq i \leq \left\lfloor \frac{n + 1}{2} \right\rfloor \]

\[f(z_{2i+1}) = 2n + 2 + i, \quad 0 \leq i \leq \left\lfloor \frac{n}{2} \right\rfloor \]

\[f(z_{2i}) = i, \quad 1 \leq i \leq \left\lfloor \frac{n + 1}{2} \right\rfloor \]

\[f(w_{2i+1}) = 4n + 3 - i, \quad 0 \leq i \leq \left\lfloor \frac{n}{2} \right\rfloor \]

\[f(w_{2i}) = 2n + 2 - i, \quad 1 \leq i \leq \left\lfloor \frac{n + 1}{2} \right\rfloor \]
Proof

Clearly f is onto with $f(x_1) = f(y_1) = n + 1$.
Proof

Clearly f is onto with $f(x_1) = f(y_1) = n + 1$.

Now we merge x_1 with y_1 to get the graph $C(2n + 3, 2n + 1)$ and keep the labeling f. Then f is a bijection between $V(C(2n + 3, 2n + 1))$ and $[1, 4n + 3]$.
Proof

Clearly f is onto with $f(x_1) = f(y_1) = n + 1$.
Now we merge x_1 with y_1 to get the graph $C'(2n + 3, 2n + 1)$ and keep the labeling f. Then f is a bijection between $V(C(2n + 3, 2n + 1))$ and $[1, 4n + 3]$.

It can be checked that f is a strong vertex-graceful labeling of $C(2n + 3, 2n + 1)$.
Examples

Example 2 This is the strong vertex-graceful labeling for $C(7, 5)$ constructed in the proof of Theorem 5.
Example 3 This is the strong vertex-graceful labeling for $C(9, 7)$ constructed in the proof of Theorem 5.
Strong vertex-graceful labeling for $C(4, 12)$.
END