Sequence

Monotonic Sequence Theorem
Every bounded monotonic sequence is convergent.

Series

Test of Divergence
If \(\lim_{n \to \infty} a_n \neq 0 \) or the limit does not exist, then the series \(\sum_{n=1}^{\infty} a_n \) is divergent.

Integral Test
If \(f \) is continuous, positive, decreasing on \([1, \infty)\) and \(a_n = f(n) \), then \(\sum_{n=1}^{\infty} a_n \) is divergent.

Comparison Test
Assume that \(\sum a_n \) and \(\sum b_n \) are series with positive terms, then
1. If \(\sum b_n \) converges and \(a_n \leq b_n \) for all \(n \), then \(\sum a_n \) converges.
2. If \(\sum b_n \) diverges and \(a_n \geq b_n \) for all \(n \), then \(\sum a_n \) diverges.

Limit Comparison Test
Assume that \(\sum a_n \) and \(\sum b_n \) are series with positive terms. If \(\lim_{n \to \infty} \frac{a_n}{b_n} = c \) and \(c > 0 \), then either both series converges or diverges.

Alternating Series Test
If the alternating series \(\sum_{n=1}^{\infty} (-1)^{n+1} b_n \) satisfies
1. \(b_n \geq b_{n+1} \) for all \(n \).
2. \(\lim_{n \to \infty} b_n = 0 \)
then the series is convergent.

Ratio Test
For a given series \(\sum a_n \),
1. If \(\lim_{n \to \infty} \frac{|a_{n+1}|}{a_n} = L < 1 \), then \(\sum a_n \) is absolutely convergent.
2. If \(\lim_{n \to \infty} \frac{|a_{n+1}|}{a_n} = L > 1 \) or the limit does not exist, then \(\sum a_n \) is absolutely convergent.
3. If \(\lim_{n \to \infty} \frac{|a_{n+1}|}{a_n} = 1 \), then we cannot get any conclusion directly.

Root Test
For a given series \(\sum a_n \),
1. If \(\lim_{n \to \infty} \sqrt[n]{|a_n|} = L < 1 \), then \(\sum a_n \) is absolutely convergent.
2. If \(\lim_{n \to \infty} \sqrt[n]{|a_n|} = L > 0 \) or the limit does not exist, then \(\sum a_n \) is absolutely convergent.

3. If \(\lim_{n \to \infty} \sqrt[n]{|a_n|} = 1 \), then we cannot get any conclusion directly.

Approximation of the Series

Since the partial sum \(S_n = \sum_{k=1}^{n} a_k \) and \(\lim_{n \to \infty} S_n = \sum_{n=1}^{\infty} a_n \), it is natural to use the partial sum as an approximation of the series. Let \(R_n = \sum_{n=1}^{\infty} a_n - S_n \), then \(R_n \) is the error when we use \(S_n \) to approximate the series. There are two tools introduced so far to estimate the error:

1. If \(a_n = f(n) \) with \(f \) being continuous, positive and decreasing for \(x \geq n \) and \(\sum a_n \) is convergent, then
 \[
 \int_{n+1}^{\infty} f(x) \, dx \leq R_n \leq \int_{n}^{\infty} f(x) \, dx.
 \]

2. If \(S = \sum_{n=1}^{\infty} (-1)^{n+1} b_n \) and the series satisfies
 (a) \(0 \leq b_{n+1} \leq b_n \)
 (b) \(\lim_{n \to \infty} b_n = 0 \)
 then \(|R_n| = |S - S_n| \leq b_{n+1} \)

Common Series

Geometric Series

The geometric series
\[
\sum_{n=1}^{\infty} ar^{n-1} = a + ar + ar^2 + \cdots
\]
is convergent if and only if \(|r| < 1 \). The sum is
\[
\sum_{n=1}^{\infty} ar^{n-1} = \frac{a}{1 - r}, |r| < 1
\]

\(p \)-Series

The \(p \)-series \(\sum_{n=1}^{\infty} \frac{1}{n^p} \) is convergent if \(p > 1 \) and divergent if \(p \leq 1 \).