Spectra of graphs
Connectedness

Student: C. K. Lee
Department of Applied Mathematics
National Chiao Tung University

April 9, 2010
Proposition 1,4,1
Let G be a graph with n connected components G_1, \ldots, G_n. Then the spectrum of G will be the union of spectral of G_i, $i = 1 \ldots n$. The same statement will hold for Laplace spectrum and signless Laplace spectrum.

Sketch of Proof
Consider the form of the matrices and the corresponding eigenvectors.
Proposition 1.4.2
Let G be an undirected graph and L be the Laplacian of G. The multiplicity of zero of L will equal to the number of components of G.

Proof
We show that if G is connected, the multiplicity of zero will be 1 and then the theorem follows from Proposition 1.4.1. Let N be the incident matrix of random orientation of G, then $L = NN^T$.

Let u be the corresponding eigenvector of 0, then
\[0 = u^T Lu = u^T NN^T u = \|N^T u\|^2 \]
Hence $N^T u = 0$ and it implies that if $v_i \sim v_j$ in G, then $u_i = u_j$ (Notice that G is oriented.). Since G is connected, $u = (1, \ldots, 1)$.
Proposition 1.4.3
Let G be an undirected k-regular graph. Then k will be the largest eigenvalue of G and its multiplicity will equal to the number of connected components.

Proof
Since G is k-regular, $L = kI - A$ and then we can compute the eigenvalues by direct subtraction. Since A is semi-positive definite, by Proposition 1.4.2, done.
Remark

Notice that Proposition 1.4.2 and Proposition 1.4.3 only hold for Laplace eigenvalues. We cannot tell whether a graph is connected by the spectrum of its adjacency matrix. For example, the spectra of both $K_{1,4}$ and $K_1 + C_4$ are $2^1, 0^3, (-2)^1$.
Proposition 1.4.4

Let G be an undirected graph and $|L|$ be the signless Laplacian of G. Then the multiplicity of zero of $|L|$ will equal to the number of bipartite connected components of G.

Proof

Let M be the undirected incident matrix, then $|L| = MM^T$. Let u be the eigenvector corresponding to 0, then $0 = |L|u = MM^Tu$.

Hence $M^Tu = 0$

It means that if $v_i \sim v_j$ in G, then $u_i = -u_j$. Therefore, the support of u is the union of bipartite component of G.
Proposition 1.4.5

G is a bipartite graph if and only if its Laplace spectrum and signless spectrum are the same.

Proof

- Necessity
 Since G is bipartite, its Laplacian and signless Laplacian are similar by a diagonal matrix D with diagonal entries being ± 1. i.e $|L| = DLD^{-1}$. Therefore, they have the same spectrum.

- Sufficiency
 By Proposition 1.4.2 and Proposition 1.4.4, the number of components equals to the number of bipartite components.