Chapter 34: NP-Completeness

2. Polynomial-time verification

Hamiltonian cycles

(a) is hamiltonian (b) is nonhamiltonian.
A formal language of *hamiltonian-cycle problem*:

\[\text{HAM-CYCLE} = \{ \langle G \rangle : G \text{ is a hamiltonian graph} \} \]

Verification algorithms

Example:

- Suppose that a friend tells you that a given graph \(G \) is hamiltonian, and then offers to prove it by giving you the vertices in order along the hamiltonian cycle.
- It is to verify the proof by checking whether it is a permutation of \(V \) and whether each of the consecutive edges along the cycle actually exists in the graph.
A verification algorithm is a two-argument algorithm A, where one argument is an ordinary input string x and the other is a binary string y called a certificate, $(A(x, y))$.

An algorithm A verifies a language L if for any string $x \in L$, there is a certificate y that A can use to prove that $x \in L$. Moreover, for any string $x \notin L$, there must be no certificate proving that $x \in L$.

The complexity class NP

- A language L belongs to NP if and only if there exist an algorithm A that verifies L in polynomial time.
- A language L belongs to NP if and only if there exist a two-input polynomial-time algorithm A and constant c such that 3
\[L = \{ x \in \{0, 1\}^* : \text{there exists a certificate } y \text{ with } |y| = O(|x|^c) \text{ such that } A(x, y) = 1 \}. \]

- **HAM-CYCLE \(\in \) NP.**

 \(y \) is a list of vertices in the hamiltonian cycle of \(G \) and \(A(\langle G \rangle, y) \) is to check whether consecutive edges along the cycle actually exists in \(G \).

- **If \(L \in P \), then \(L \in NP \). (Thus \(P \subseteq NP \).)**

 Example: for the decision problem PATH and an instance \(\langle G, u, v, k \rangle \), \(y \) is a list of vertices in a shortest \(uv \)-path and \(A(\langle G, u, v, k \rangle, y) \) is to sum the edge weights along \(y \) and check whether the summation is at most \(k \).
\[P = \text{NP}? \text{ (unknown!)} \]

Does \(L \in \text{NP} \) imply \(\overline{L} \in \text{NP} \)?

\text{co-NP} is the set of languages \(L \) such that \(\overline{L} \in \text{NP} \).

So, \(\text{HAM-CYCLE} \in \text{co-NP} \).

\(L \in \text{NP} \) implies \(\overline{L} \in \text{co-NP} \).

\(\text{NP} = \text{co-NP}? \) (unknown!)

\[P \subseteq \text{NP} \cup \text{co-NP}. \]

\(P = \text{NP} \cup \text{co-NP}? \) (unknown!)
Four possible scenarios:
3. NP-completeness and reducibility

Reducibility

A language L_1 is \textit{polynomial-time reducible} to a language L_2, written $L_1 \leq_P L_2$, if there exists a polynomial-time computable function $f: \{0, 1\}^* \rightarrow \{0, 1\}^*$ such that for all $x \in \{0, 1\}^*$,

$$x \in L_1 \text{ if and only if } f(x) \in L_2.$$

Lemma 34.3

If $L_1, L_2 \subseteq \{0, 1\}^*$ are languages such that $L_1 \leq_P L_2$, then $L_2 \in \mathbb{P}$ implies $L_1 \in \mathbb{P}$.

![Diagram](image)
NP-completeness

► Definition: \(L \) is **NP-hard** if \(L' \leq_P L \) for every \(L \in \text{NP} \).

► Definition: A language \(L \subseteq \{0, 1\}^* \) is **NP-complete** if \(L \in \text{NP} \), and \(L' \leq_P L \) for every \(L' \in \text{NP} \).

► SAT was the first known NP-complete problem, as proved by Stephen Cook in 1971 (see Cook's theorem for the proof).

Theorem 34.4

If any NP-complete problem is polynomial-time solvable, then \(\text{P} = \text{NP} \).

Equivalently, if any problem in NP is not polynomial-time solvable, then no NP-complete problem is polynomial-time solvable.
4. NP-completeness proofs

In the celebrated Cook-Levin theorem (independently proved by Leonid Levin), Cook proved that the Boolean satisfiability problem is NP-complete.

In definition, L is **NP-hard** if $L' \leq_P L$ for every $L \in \text{NP}$.

Lemma 34.8

If L is a language such that $L' \leq_P L$ for some $L' \in \text{NPC}$, then L is **NP-hard**. Moreover, if $L \in \text{NP}$, then $L \in \text{NPC}$.

In the celebrated **Cook-Levin theorem** (independently proved by **Leonid Levin**), Cook proved that the **Boolean satisfiability problem** is NP-complete.
In 1972, Richard Karp proved that several other problems were also NP-complete (see Karp's 21 NP-complete problems); thus there is a class of NP-complete problems.

Since Cook's original results, thousands of other problems have been shown to be NP-complete by reductions from other problems previously shown to be NP-complete; many of these problems are collected in Garey and Johnson's 1979 book Computers and Intractability: A Guide to the Theory of NP-Completeness.

List of NP-complete problems (Wiki):
5. NP-complete problems on graph theory (from our textbook)
(The following provides the sketch of how to prove that a decision problem is NP-complete. Many details are omitted. Please refer to our textbook for complete proofs.)

The clique problem

► **Definition:** a *clique* is a complete subgraph of G.

► The *clique problem* is the optimization problem of finding a clique of maximum size in a graph. Its **decision problem**: whether a clique of a given size k exists in the graph.

Theorem 34.11

The clique problem is NP-complete.
Proof

• (CLIQUE ∈ NP)

 Certificate: the set \(V' \subseteq V \) of vertices in the clique for \(G \).
 Checking whether \(V' \) is a clique can be accomplished in polynomial time by checking whether, for each pair \(u, v \in V' \), the edge \((u, v)\) belongs to \(E \).

• (The clique problem is NP-hard by showing 3-CNF-SAT \(\leq_p \) CLIQUE.)

 “An example says thousand words!”

 Example: \(\varphi = (x_1 \lor \neg x_2 \lor \neg x_3) \land (\neg x_1 \lor x_2 \lor x_3) \land (x_1 \lor x_2 \lor x_3) \).

 We construct the corresponding graph \(G \) as follows.
A polynomial reduction:
- The input to 3-CNF-SAT can be transformed into input to CLIQUE in polynomial time.
- Suppose φ contains k clauses.
 φ is satisfied if and only if G has a clique of size k.
The vertex-cover problem

- A vertex cover of an undirected graph $G = (V, E)$ is a subset V' \subseteq V such that if $(u, v) \in E$, then $u \in V'$ or $v \in V'$. The size of a vertex cover is the number of vertices in it.
- Example: the graph has a vertex cover \{w, z\} of size 2.

- The vertex-cover problem is to find a vertex cover of minimum size in a given graph. Its decision problem: determine whether a graph has a vertex cover of a given size k.

15
Theorem 34.12
The vertex-cover problem is NP-complete.

Proof

◆ (VERTEX-COVER ∈ NP)
Suppose we are given a graph $G = (V, E)$ and an integer k.
Certificate: the vertex cover $V' \subseteq V$ itself.
The verification algorithm affirms that $|V'| = k$, and then it checks, for each edge $(u, v) \in E$, that $u \in V'$ or $v \in V'$.
This verification can be performed in polynomial time.

◆ (The vertex-cover problem is NP-hard by showing that CLIQUE \leq_P VERTEX-COVER)
A polynomial reduction:

- The input \(\langle G, k \rangle \) to CLIQUE can be transformed into the input \(\langle \overline{G}, |V| - k \rangle \) to VERTEX-COVER in polynomial time, where \(\overline{G} \) is the complement of \(G \).
- \(G \) has a vertex cover of size \(k \) if and only if \(\overline{G} \) has a clique of size \(|V| - k|.

The hamiltonian-cycle problem

Theorem 34.13
The hamiltonian cycle problem is NP-complete.
Proof

- **(HAM-CYCLE ∈ NP)**
 Given a graph $G = (V, E)$, our certificate is the sequence of $|V|$ vertices that makes up the hamiltonian cycle. The verification algorithm checks that this sequence contains each vertex in V exactly once and that there is an edge between each pair of consecutive vertices and between the first and last vertices. This verification can be performed in polynomial time.

- **(VERTEX-COVER ≤p HAM-CYCLE, which shows that HAM-CYCLE is NP-hard.)**
 Given an undirected graph $G = (V, E)$ and an integer k, we construct an undirected graph $G' = (V', E')$ that has a
hamiltonian cycle if and only if G has a vertex cover of size k.

G' is constructed according to steps 1-3.

Step 1:

An edge (u, v) of graph G corresponds to widget W_{uv} in the graph G' created in the reduction. (a) The widget, with individual vertices labeled.
(b)-(d) The shaded paths are the only possible ones through the widget that include all vertices, assuming that the only connections from the widget to the remainder of G' are through vertices $[u, v, 1]$, $[u, v, 6]$, $[v, u, 1]$, and $[v, u, 6]$.
Neighbors of w are ordered as xyz.
Neighbors of x are ordered as wy.
Neighbors of y are ordered as xw.
Step 2:

The only other vertices in V' other than those of widgets are selector vertices s_1, s_2, \ldots, s_k.

Step 3:

In addition to the edges in widgets, there are two other types of edges in E'.

First, for each vertex $u \in V$, we arbitrarily order the vertices adjacent to each vertex $u \in V$ as $u^{(1)}, u^{(2)}, \ldots, u^{(\text{degree}(u))}$ and then add to E' the edges

$$\{(u, u^{(i)}, 6), [u, u^{(i+1)}, 1] : 1 \leq i \leq \text{degree}(u) - 1\}.$$
\textbf{Second}, we include the edges
\begin{align*}
\{(s_j, [u, u^{(1)}], 1]) : u \in V \text{ and } 1 \leq j \leq k\} \cup \\
\{(s_j, [u, u^{(\text{degree}(u))}, 6]) : u \in V \text{ and } 1 \leq j \leq k\}.
\end{align*}

- The transformation from graph G to G' is a reduction:
 - The input $\langle G, k \rangle$ to VERTEX-COVER can be transformed into the input $\langle G' \rangle$ to HAM-CYCLE in polynomial time.
 - G as a vertex cover of size k if and only if G' has a hamiltonian cycle.

(1) Suppose that $G = (V, E)$ has a vertex cover $V^* = \{u_1, u_2, \ldots, u_k\}$. A hamiltonian cycle in G is as
\[s_1 - [u_1, u_1^{(1)}, 1] \quad s_2 - [u_2, u_2^{(1)}, 1] \quad \cdots \quad s_k - [u_k, u_k^{(1)}, 1] \]

(2) Suppose that \(G = (V, E') \) has a hamiltonian cycle \(C \subseteq E' \). We claim that \(V^* = \{ u \in V : (s_j, [u, u^{(1)}, 1]) \in C \text{ for some } 1 \leq j \leq k \} \) is a vertex cover.
Key observation:

- partition C into maximal paths, called “cover path” as

 $$s_i [u, u^{(1)}, 1] \ldots s_j,$$

 without passing through any other selector vertex.

- Each cover path must start at some s_i, take the edge $(s_i, [u, u^{(1)}, 1])$ for some vertex $u \in V$, pass through all the widgets corresponding to edges in E incident on u, and then end at some selector vertex s_j.

- Each vertex in each widget is visited by some cover path, we see that each edge in E is covered by some vertex in V^*.
The traveling-salesman problem

- The traveling-salesman problem: given a complete graph where each edge has an integer cost, the salesman wishes to find a hamiltonian cycle of minimum cost.
- The following example has a minimum-cost tour \(\langle u, w, v, x, u \rangle \), with cost 7.
Theorem 34.14
The traveling-salesman problem is NP-complete.

Proof

- **(TSP ∈ NP)**
 Given an instance $\langle G, k \rangle$ of the problem, we use as a certificate the sequence of n vertices in the tour. The verification algorithm checks that this sequence contains each vertex exactly once, sums up the edge costs, and checks whether the sum is at most k. This process can certainly be done in polynomial time.

- **(TSP is NP-hard since HAM-CYCLE \leq_p TSP).**
 - Let $G = (V, E)$ be an instance of HAM-CYCLE. We
construct an instance of TSP as follows. We form the complete graph $G' = (V, E')$, where $E' = \{(i, j) : i, j \in V \text{ and } i \neq j\}$, and we define the cost function c by

$$c(i, j) = \begin{cases}
0 & \text{if } (i, j) \in E, \\
1 & \text{if } (i, j) \notin E.
\end{cases}$$

The instance of TSP is then $(G', c, 0)$, which is easily formed in polynomial time.

\blacklozenge G has a hamiltonian cycle if and only if graph G' has a tour of cost at most 0.