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An inextensible vesicle under shear flow experiences a tank-treading motion on its membrane if the viscosity
contrast between the interior and exterior fluids is small. Above a critical threshold of viscosity contrast, the
vesicle undergoes a tumbling bifurcation. In this paper, we extend our previous work [Kim and Lai, J. Comput.
Phys. 229, 4840 (2010)] to the case of different viscosity and investigate the transition between the tank-treading
and tumbling motions in detail. The present numerical results are in a good agreement with other numerical and
theoretical studies qualitatively. In addition, we study the inertial effect on this transition and find that the inertial
effect might inhibit the tumbling motion in favor of the tank-treading motion, which is observed recently in the
literature. The critical viscosity contrast for the transition to the tumbling motion usually increases as the reduced
area increases in the Stokes regime. However, we surprisingly observe that the critical viscosity contrast decreases
as the reduced area increases to some point in the flow of slightly higher Reynolds number. Our numerical result
also shows that the inertial effect has stronger inhibition to tumbling motion when the reduced area is small.
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I. INTRODUCTION

We introduce an immersed boundary (IB) method [1–4]
to simulate the dynamics of inextensible vesicles in an
incompressible viscous fluid with different viscosity contrasts.
The dynamics of an individual vesicle in a flow has been widely
investigated by mathematical studies [5–8] and numerical
simulations [9–12] as well as experiments [13–16] (and the ref-
erences therein). This interest in vesicle dynamics is motivated
by the strong resemblance to many biological systems [9] such
as red blood cells [17,18] and drug-carrying capsules [19].

It has been known for a while that a vesicle in a shear
flow has two types of motion: tank-treading and tumbling.
This transition is of fundamental importance since it can
alter rheological properties of a vesicle solution by reducing
dissipation [6,12]. The selection between these two types of
vesicle motion depends on the reduced volume (a flattened
vesicle would tumble more easily than a swollen one) and
the viscosity contrast (the more viscous the internal fluid in
comparison to the external one is, the easier is the tumbling)
[5–8,12,15,16]. Several attempts to understand the transition
between tank-treading and tumbling motions have been made
in the literature. The most prominent and pioneering result is
the work of Keller and Skallak [5] who have derived an evo-
lution equation of the vesicle inclination angle in a shear flow.

The dynamics of moving vesicles is determined by their
membrane elasticity (bending resistance), inextensibility, and
hydrodynamical force. In Ref. [4], we have applied an IB
method to simulate the dynamics of inextensible vesicles. We
have used a penalty idea [20] to enforce the inextensibility con-
straint of the vesicle, verified the numerical method by a series
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of convergence study, and shown that the vesicle in a simple
shear flow undergoes a tank-treading tangential motion at its
equilibrium state. The simulation results in Ref. [4] were com-
parable to other theoretical and numerical works in literature.

Since the method used in Ref. [4] has assumed that the
fluid viscosities inside and outside the vesicle are the same,
i.e., the viscosity contrast is always 1, we have observed only
the tank-treading motion of the vesicle. In this paper, we extend
the method used in Ref. [4] to handle the case in which the
fluid has a viscosity contrast other than 1. Since the viscosity is
discontinuous and has two different constant values across the
boundary of the vesicle, we adopt the approach of Tryggvason
et al. [21] and introduce an indicator function to smooth out
the discontinuity of the viscosity. In this way we can regard the
fluid inside and outside of the vesicle as the same one with a
nonuniform viscosity. The details shall be presented in Sec. III.

In order to show that the present IB method is a robust and
efficient numerical tool to handle inextensible vesicles with
a nonunity viscosity contrast, we first perform a convergence
study, which confirms the consistent first-order convergence
for the velocity field in L2 norm. Then we simulate several
two-dimensional problems with a single vesicle under shear
flow. From those runs, we show that the simulation results
obtained by the IB method are comparable to those in the
previous literature [5–8,12,15,16]. We also investigate the
tank-treading/tumbling transitions in a flow with Reynolds
number of order 1, and show that the inertia effect may inhibit
the tumbling motion in favor of the tank-treading motion. This
inhibition is stronger especially when the reduced area is small.

II. MODEL EQUATIONS

Consider a two-dimensional viscous incompressible fluid in
a domain � which contains an immersed, inextensible, mass-
less vesicle. Our mathematical formulation and computational
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implementation for this fluid-structure interaction problem is
based on the penalty immersed boundary (pIB) method [4,20].

In the pIB method [4], we use a dual representation of
the immersed vesicle boundary. One of its representatives,
denoted by X(s,t), interacts with the fluid and moves at the
local fluid velocity, just as the traditional immersed boundary
formulation. The other representative, denoted by Y(s,t), is
elastic and linked to X(s,t) by a stiff spring system. The
boundary points of Y(s,t) are not coupled directly to the fluid,
and they move as if in a vacuum. Then the equations of motion
of the pIB formulation are as follows:

ρ

(
∂u
∂t

+ u · ∇u
)

= −∇p + ∇ · [μ(x,t)(∇u + ∇uT )] + f,

(1)

∇ · u = 0, (2)

f(x,t) =
∫

�

F(s,t)δ(x − X(s,t))ds, (3)

∂X
∂t

(s,t) = U(s,t) =
∫

�

u(x,t)δ(x − X(s,t))dx, (4)

F = K(Y(s,t) − X(s,t)) + R(V(s,t) − U(s,t)), (5)

K(Y(s,t) − X(s,t)) + R(V(s,t) − U(s,t))

= ∂

∂s
(σ (s,t) τ (s,t)) − cb

∂4Y(s,t)

∂s4
, (6)

∂V
∂s

· ∂Y
∂s

= 0. (7)

Equations (1) and (2) are the familiar Navier-Stokes equa-
tions for an incompressible viscous fluid with a nonuniform
viscosity. The fluid density ρ is a constant, but the viscosity
μ(x,t) is a piecewise constant function which has two different
values inside and outside the vesicle. The unknown variables
in the fluid equations are the fluid velocity, u(x,t), and the
fluid pressure, p(x,t), where x = (x,y) are fixed Cartesian
coordinates, and t is the time.

Equation (3) and (4) both involve the two-dimensional
Dirac delta function δ(x) = δ(x)δ(y), which expresses the local
character of the interaction between the fluid and the immersed
boundary. Equation (3) simply expresses the relation between
the two corresponding force densities f(x,t)dx and F(s,t)ds,
and Eq. (4) is the equation of motion of the vesicle boundary
which indicates that the boundary moves at the local fluid
velocity.

Equations (5)–(7) are the vesicle boundary equations which
are written in Lagrangian form. Equation (5) defines the force
density F which is transmitted by the boundary X(s,t) to
the fluid. It includes only the force density generated by the
stiff springs that link the two representations of the immersed
boundary. Here, V = ∂Y/∂t is the velocity of the boundary
Y(s,t), and K and R are the penalty parameters. The larger the
penalty parameters are, the greater is the penalty energy paid
to separate the positions and velocities of those two boundary
representations.

Equation (6) is the equation for the position and velocity of
the boundary Y(s,t) which describes that the penalty force F is
instantaneously balanced by the elastic force of the boundary

Y(s,t). This elastic force does not act directly on the fluid; i.e.,
the boundary Y(s,t) does not interact with the fluid directly.
Here the function τ (s,t) is the unit tangent vector to the
boundary Y(s,t); i.e., τ (s,t) = ∂Y

∂s
/| ∂Y

∂s
|. Whereas the bending

coefficient cb is a constant, the elastic tension σ (s,t) is an
unknown function which plays the role of Lagrange multiplier
to enforce the inextensibility constraint of the vesicle boundary
in Eq. (7).

Consider the case in which the penalty parameters K and
R go to infinity. Then the boundaries X(s,t) and Y(s,t) and
the velocities U(s,t) and V(s,t) will tend to coincide, and F in
Eq. (5) approaches the elastic force density Fe of the form

Fe(s,t) = ∂

∂s
(σ (s,t) τ (s,t)) − cb

∂4X(s,t)

∂s4
, (8)

which is the standard formula for a vesicle under tension (first
term) and bending resistance (second term). If we use the
force density Fe(s,t) instead of Eqs. (5) and (6), the system of
equations becomes the traditional IB formulation. Since the
surface tension σ (s,t) is an unknown function, the traditional
IB method should be solved in an implicit way, which requires
an iterative method to solve the whole system. By setting the
dynamics for the boundary Y apart from the whole system
(especially the fluid equations), the pIB method can find the
unknown function σ (s,t) more easily. The dynamics of the
boundary Y is related to the whole system only through
the penalty force F.

In practice, we choose K and R sufficiently large to keep
the positions and velocities of the two representations of
the boundary close to each other. Notice that the present
pIB idea shares the same spirit with the “virtual boundary
method” [22,23] for simulating a flow past a rigid boundary.
Both methods introduce the penalty parameters K and R to
penalize the difference in the desired and numerical velocities
and positions of the immersed boundaries. The difference is
that the virtual boundary method is developed to impose the
no-slip boundary condition along a rigid boundary, whereas the
present pIB method is to impose the inextensibility condition
on the immersed boundary.

III. NUMERICAL IMPLEMENTATION

For the numerical implementation of the system (1)–(7), we
use a first-order IB method, generalized to take into account
the boundary Y that is linked to the boundary X by stiff springs.
In the time level n�t , the configurations of the two boundary
representatives X and Y and the velocities u and V are all given.
We update these values in the next time level (n + 1) �t by
the following procedure.

Step 1. Use Eqs. (5) and (3) to calculate the force density
F defined on Lagrangian grid points and spread it into the
Eulerian grid points to obtain the force density f in the fluid
equations.

Step 2. Find the indicator function I (x) to define the
viscosity function. Since the indicator function has the value
1 (I = 1) inside the vesicle boundary X and the value zero
(I = 0) outside, it can be calculated by the following procedure
[21]. Let �in represent the interior of the vesicle and n be the
unit outward normal to the vesicle; then the indicator function
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FIG. 1. The configuration of a single vesicle suspended in the shear flow u0 = (u0,v0) = γ (y,0) at t = 0 (left) and t = 72 τ (right) where τ

is the intrinsic time scale. The effective radius of the vesicle R0 is used as the length scale. Here the reduced area of the vesicle is V = 0.7, the
Reynolds number is Re = 0.008, and the viscosity contrast is λ = 3.5. The vesicle boundary together with streamlines shows a tank-treading
tangential motion with a steady inclination angle θ between the long axis of the vesicle and the flow direction.

can be represented by

I (x) =
∫

�in

δ(x − x̃) dx̃. (9)

By taking the gradient first to I (x) and divergence operator
next to the resultant equation, we have

∇I (x) = −
∫

X
δ(x − X)n ds, (10)

�I (x) = −∇ ·
∫

X
δ(x − X)n ds. (11)

Thus, the indicator function can be obtained by solving the
Poisson equation (11) with a singular source using a standard
finite difference method. Once the indicator function is found,
the viscosity can be defined as

μ(x) = μout + (μin − μout)I (x), (12)

where μin and μout are the viscosities inside and outside the
vesicle, respectively. In practice, the viscosity is a smoothing
function rather than a piecewise constant function across the
vesicle boundary.

Step 3. Given the computed force density f and the viscosity
μ, we solve the discretized version of the fluid equations (1)
and (2) to update the velocity and pressure fields.

Step 4. Update the velocity U using Eq. (4) and the velocity
V using Eqs. (6) and (7). The combination of Eqs. (6) and (7)
induces a modified Helmholtz equation for the unknown
function σ (s,t), which can be solved by a standard finite-
difference method; see [4] for the detail.

Step 5. As the last step, we update the configuration of the
two representations X and Y of the boundary using the forward
Euler method with the velocities U and V. This completes the
evolution over one time step.

IV. NUMERICAL RESULTS

In this section, we conduct a series of numerical tests
for a single vesicle suspended in a simple shear flow. This
problem has been explored by several researchers through

numerical simulations [9–12] in the Stokes flow regime.
We first present the initial setup for our vesicle model and
display the physical and computational parameters used in our
numerical experiments.

Consider the computational domain of a rectangular box
which is filled with an incompressible viscous fluid and
contains an elastic vesicle in the form of a closed curve; see the
left panel of Fig. 1 which shows the initial configuration of a
vesicle. Following the analysis and scaling in Refs. [9,11,12],
we use the length scale R0 = L/2π where L is the perimeter
of the vesicle boundary. The computational domain in our
numerical study is chosen as (−D/2,D/2) × (−D,D) where
D = 8R0.

In order to apply the shear flow, it is natural to impose
the background velocity field u0 = (u0,v0) = γ (y,0) to the
whole domain, where y ranges from −D to D and γ is the
shear rate. In this paper, however, since we use the periodic
boundary condition for the computational domain, we impose
the following shear flow:

u0(y) =

⎧⎪⎪⎨
⎪⎪⎩

γy, if |y| � H,

γ H
D−y

D−H
, if H < y � D,

−γ H
D+y

D−H
, if −D � y < −H,

(13)

and v0 = 0. The set of points {(x,y) | |x| � D/2, y = ±H }
represents two walls parallel to the x axis in the domain. Even
though the imposed shear flow is not smooth, it generates
almost the same flow as the natural shear flow u0 = (u0,v0) =
γ (y,0) in |y| � H ; see the left panel of Fig. 1.

The distance 2H between the two parallel walls is chosen as
12R0. We have checked that when the distance 2H varied from
11R0 up to 14R0, the desirable shear flow is generated well and
the simulation results are all similar. We define the time scale
as τ = μoutR

3
0/cb where μout is the fluid viscosity outside the

vesicle and cb is the bending coefficient of the vesicle. Then
the time step is �t = 1.5 × 10−5 in the intrinsic time units,
and the spatial mesh width is h = �x = �y = R0/16. The
number of node points representing the vesicle boundary
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FIG. 2. The configuration of the right half vesicle at t = 3 τ for the four N ’s (left) and convergence ratios (defined in the text) of the
computed velocity field u(x,t) (right). In the right panel, the dashed line is the convergence ratio obtained using the grids N = 64,128,256,
while the solid line is the ratio obtained with N = 128,256,512. The vesicle configurations are very close for the four N ’s, and the convergence
ratios for the velocity are near 2 (first-order accuracy).

is 200, which makes the boundary mesh width �s to be
approximately half the fluid mesh width h. Using τμoutR0 as
the scale of mass, the two dimensionless penalty parameters
are chosen as K = 4 × 105 and R = 4 × 103.

We vary the initial configuration of the vesicle, the shear
rate γ , and the fluid viscosity inside the vesicle μin to see
the dependence of the vesicle dynamics on these parameters.
These variations, which control the interaction between the
fluid flow and the vesicle motion, introduce the following
dimensionless parameters:

(i) The viscosity contrast, λ = μin/μout.
(ii) The reduced area,

V = A

π R2
0

= 4 Aπ

L2
, (14)

where A is the area of the vesicle. The reduced area V , which
indicates how much a vesicle is deflated, is 1 for a circular
vesicle (maximally swollen one) and is less than 1 for a deflated
one.

(iii) The Reynolds number,

Re = ργR2
0

μout
, (15)

which measures the inertial force versus viscous force.
Throughout this paper, we vary the Reynolds number by
simply adjusting the shear rate γ while keeping other physical
parameters fixed.

A. Convergence study

In order to validate that the present pIB method correctly
solves the inextensible vesicle dynamics in an incompressible
fluid with different viscosity contrasts, we first perform a
convergence study. We consider a single vesicle in a shear flow
with the reduced area V = 0.7, the viscosity contrast λ = 6,
and the Reynolds number Re = 0.8. Now we choose the mesh
size (N,2N ) of the domain where N = 64, 128, 256, and 512
so that the corresponding mesh width is h = 8R0/N . We also
choose �s and �t proportional to h, so that each factor of 2 in
refinement of the fluid mesh width is accompanied by the same
factor of refinement for the boundary mesh and the time step

duration. The penalty parameters are adjusted with the mesh
size as K = 105N/64 and R = 103N/64; i.e., both parameters
increase as the mesh width and time step are refined.

The left panel of Fig. 2 shows the configuration of the
right-half vesicle at t = 3 τ for the four N ’s. We can see that
the vesicle configurations are close for the four cases of N .
Especially, the difference of the vesicle configurations between
the cases of N = 256 and 512 is smaller than that between
the cases of other pairs with coarser resolutions, which might
imply the convergence behavior of the solutions.

To get a more quantitative measure of convergence, we
compare the velocity fields computed on the four different
mesh widths. The right panel of Fig. 2 shows the convergence
ratios of the computed fluid velocity u(x,t). Since we do not
have the exact solution for the problem, the estimation of
the convergence ratio requires three numerical solutions for
three consecutive grid sizes N . We first define the discrete
L2 norm of a scalar valued function ψ defined on the
Cartesian grid as ||ψ ||2 = (

∑
i,j |ψi,j |2h2)1/2. Let (uN,vN ) be

the velocity field for an N × 2N Cartesian grid; then the left
panel of Fig. 2 shows the convergence ratios (||uN − u2N ||22 +
||vN − v2N ||22)1/2/(||u2N − u4N ||22 + ||v2N − v4N ||22)1/2 versus
time for each of the cases N = 64 (dashed line) and N = 128
(solid line).

One can see from the figure that the convergence ratios for
the fluid velocity are around 2, which indicates that the present
method is first-order accurate. This is the typical behavior in
accuracy for the IB method as applied to problems with thin
elastic boundaries in which both the pressure and velocity are
nonsmooth along the immersed boundary [24]. For a second-
order IB method in the case of an immersed elastic structure of
finite thickness, the interested readers can refer to [20,25,26].

B. Single vesicle under a shear flow in Stokes regime

It is well known that when the viscosity contrast λ is small,
the vesicle in a simple shear flow undergoes a tank-treading
tangential motion at its equilibrium configuration [5,9,12–15].
This can be observed in the simulation results of Fig. 3 in
which the vesicle boundary together with streamlines shows a
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FIG. 3. Vesicle boundary and streamlines at t = 72 τ . The reduced area of the vesicle is V = 0.7, and the Reynolds number is Re = 0.008.
The viscosity contrast is λ = 1 (left), 2 (middle), and 3 (right). The vesicle boundaries show a tank-treading tangential motion with a steady
inclination angle θ which depends inversely on the viscosity contrast λ.

tank-treading tangential motion with a steady inclination angle
θ at time t = 72 τ . Whereas the reduced area of the vesicle is
V = 0.7 and the Reynolds number is Re = 0.008 in all the
three cases, the viscosity contrasts are different: λ = 1 (left),
2 (middle), and 3 (right). Notice that the inclination angle θ

between the long axis of the vesicle and the flow direction
depends inversely on the viscosity contrast λ.

The dependence of the inclination angle θ on the viscosity
contrast and the reduced volume has long been studied. Under
the assumption of a fixed ellipsoidal vesicle boundary, Keller
and Skalak (KS theory) have derived an evolutional equation
for the inclination angle θ [5] as

dθ

dt
= A + B cos(2θ ), (16)

where A and B depend on the shear rate γ , the viscosity
contrast λ, and the shape of the ellipsoid; see [5] for the
exact formula for A and B. Even though the determination of
these coefficients A and B is quite complicated in a particular
situation, Eq. (16) simply states that there are two types of
motions [5–8]; namely, (1) when A/B < 1, a steady state can
exist, in which case the inclination angle can be calculated
by θ = cos−1(−A/B)/2 (tank-treading motion); (2) when

A/B > 1, the motion is no longer stationary, and the vesicle
tumbles and rotates in a shear flow (tumbling motion).

We can compare the tank-treading motions of three vesicles
in Fig. 3 and a tumbling motion of a vesicle in Fig. 4. While
the other parameters are kept the same, the former has a small
viscosity contrast up to λ = 3, and the latter has a larger
viscosity contrast, λ = 10. The left panels of Fig. 4 depict the
configurations of a single vesicle at some chosen times which
clearly shows the tumbling motion of the vesicle. Note that
the time scale in Fig. 4 is the reciprocal of the shear rate, i.e.,
1/γ , which is different from the previous figures. This time
scale will be used from here throughout the paper in order to
remove the dependence of the tumbling frequency on the shear
rate γ and to see the inertia effect more clearly; see the next
section.

When a vesicle with a fixed ellipsoidal boundary tumbles,
the general solution of (16) can be found as

θ (t) = arctan

(
A + B√
A2 − B2

tan[
√

A2 − B2 (t − t0)]

)
. (17)

The right panel presents the time evolution of the inclination
angle θ of the tumbling vesicle shown in the left panels (solid
line) which agrees well with a solution of the KS theory given
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FIG. 4. The configuration of a single vesicle suspended in a shear flow at some chosen times (left panels) and the time evolution of the
inclination angle θ (right panel). The figures are scaled using the time scale 1/γ and the length scale R0. The reduced area of the vesicle is
V = 0.7, the Reynolds number is Re = 0.008, and the viscosity contrast is λ = 10. We can observe a tumbling motion of the vesicle (left
panels). The time evolution of the inclination angle θ of the numerical result (solid line) agrees well with a solution of the KS theory given
as (17) (dashed line).
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as (17) (dashed line) in which A and B are determined using the
ellipse which has the same area and perimeter as the vesicle
shown in the left panels of Fig. 4. The small deviation of
our result from the KS theory in the right panel is due to
the fact that the KS theory has the assumption of a fixed
elliptical vesicle boundary, which is apparently not satisfied
in our vesicle model.

According to the KS theory, the coefficient B is a function
of the viscosity contrast λ and the ellipsoidal shape which
determines the reduced area V (volume in 3D). In the tank-
treading regime, when the viscosity contrast λ increases or
the reduced area V decreases, the coefficient B decreases,
so the steady inclination angle θ decreases. This fact can be
verified from Fig. 5 in which we plot the steady inclination
angle in terms of the viscosity contrast λ for various reduced
areas. In the figure, we compare our simulation results (solid
lines) and the KS theory in 2D (dashed lines). Although
both results capture the generic dependence of the inclination
angle θ on viscosity contrast λ and reduced area V , there are

some quantitative discrepancies between the theory and the
numerical results. Despite this, Fig. 5 is quite comparable to
Fig. 5 in Ref. [12] which uses a different numerical method
but observes the same type of discrepancies.

For each fixed reduced area V , as the viscosity contrast λ

increases in the tank-treading regime, the inclination angle θ

decreases as shown in Fig. 5. If λ increases further to reach
some critical value λc, there occurs a transition from tank-
treading to tumbling. Figure 6 shows the prediction of λc using
the numerical simulations (solid line) in comparison with the
KS theory (dashed line). The KS theory (16) predicts that the
critical viscosity contrast is achieved at A = −B, and also
that, close to this transition point, the angle θ is related to
the viscosity contrast λ with a square root law. We use the
numerical results shown in Fig. 5 to interpolate around θ =
0 with a square root function, and to extrapolate it at θ =
0 to obtain the critical viscosity contrast λc. Though both
the predictions produce qualitatively the same trend of the
critical viscosity contrast versus the reduced area, it is a bit
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FIG. 6. The comparison of the critical viscosity contrast λc in terms of the reduced area between our numerical results and the KS theory.
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FIG. 7. The configuration of a single vesicle in a shear flow at some chosen times with the time scale 1/γ and the length scale R0. The
physical parameters are all the same as those used in Fig. 4 except for the Reynolds number. The Reynolds number here is Re = 0.8 which is
100 times higher than that of Fig. 4. One can see a clear tumbling motion with an ample vesicle deformation.

underestimated by the theory; see Fig. 6 which is also quite
comparable to Fig. 6 in Ref. [12].

C. Single vesicle under a shear flow with O(1) Reynolds number

Most of the theoretical and numerical studies on the transi-
tion between tank-treading and tumbling motions of a vesicle
have been so far restricted to the Stokes regime by neglecting
the inertia effect [5–12]. Also available experimental data
on the vesicle dynamics correspond to a very low Reynolds
number limit [13–16]. The vesicle dynamics can be a model
of a red blood cell interacting with blood flow which may
have the Reynolds number of order 1 [27,28]. In this case, one
cannot ignore the inertia effect and needs to consider the full
Navier-Stokes equations. Notice that the present pIB method is
not restricted to Stokes flow and can handle flows with a high
Reynolds number which can be realized simply by increasing
the shear rate; see Eq. (15).

Figure 7 depicts a vesicle motion in a flow with 100 times
higher Reynolds number than the previous simulations. The
reduced area of the vesicle is V = 0.7 and the viscosity
contrast is λ = 10. These two values and other parameters
are the same as those of the vesicle shown in Fig. 4 except
for the Reynolds number. Though both vesicles go through
the same qualitative behavior of tumbling motion, the vesicle
with Re = 0.8 (Fig. 7) shows an ample vesicle deformation as
compared to the one with Re = 0.008 (Fig. 4).

Figure 8 shows the inclination angle θ in terms of time for
various Reynolds numbers. Since the vesicle may not maintain
an elliptical boundary in a high Reynolds number flow, we
define the inclination angle as the angle between the x axis
and the longest line segment among the line segments from
the center of the vesicle to the vesicle boundary. In order to
remove the dependence of the frequency on the shear rate γ

and to see the inertia effect more clearly, we use as the time
scale the reciprocal of the shear rate 1/γ . The reduced area of
the vesicle is V = 0.7 and the viscosity contrast is λ = 15.

The upper panel of Fig. 8 shows that when the Reynolds
numbers are low, i.e., Re = 0.008, 0.4, and 1.2, the vesicle
undergoes a tumbling motion, with the tumbling frequency
getting lower as the Reynolds number gets higher. The large
difference of the tumbling frequencies without collapsing
indicates that there exists an apparent inertia effect which is to
prevent a vesicle from tumbling. When the Reynolds number
becomes even higher, i.e., Re = 1.6 and 2 (lower panel), the
inertia effect gets higher and the vesicle stops tumbling and
returns to the tank-treading motion with an almost steady
inclination angle θ . Also the steady inclination angle θ in
these high Reynolds number flows is generally larger than
those of tank-treading vesicles in the Stokes regime; compare
the inclination angles in Figs. 8 and 5.

Table I shows the tumbling frequency when the vesicle
with V = 0.7 is in the tumbling regime (TB) and the steady
inclination angle θ when it is in the tank-treading regime
(TT) for various Reynolds numbers and viscosity contrasts. In
the tumbling regime, as the Reynolds number gets lower, the
tumbling frequency becomes higher; i.e., the vesicle tumbles
more frequently. In fact, a higher Reynolds number implies a
higher shear rate and thus a higher moment generated, which
forces the vesicle to rotate more frequently in the real time.
However, when we use the dimensionless time γ× time to
remove the dependence on the shear rate, as the Reynolds
number gets higher, the inertia effect gets stronger and the
tumbling frequency becomes lower as shown in Table I.

Also in the tumbling regime, as the viscosity contrast gets
larger, the tumbling frequency becomes higher. When the
internal fluid gets more viscous, the vesicle behaves more as
if quasirigid, which makes the torque for rotational motion

066321-7



YONGSAM KIM AND MING-CHIH LAI PHYSICAL REVIEW E 86, 066321 (2012)

0 10 20 30 40 50

−π/2

0

π/2

γ t 

an
gl

e 
θ

Re=0.008
Re=0.4
Re=1.2

0 20 40 60 80 100 120
0

π/8

π/4

3π/8

π/2

γ t

an
gl

e 
θ

Re=1.6
Re=2

FIG. 8. The inclination angle θ in terms of dimensionless time for various Reynolds numbers. The reduced area of the vesicle is V = 0.7
and the viscosity contrast is λ = 15. When the Reynolds numbers are 0.008, 0.4, and 1.2 (upper panel), the vesicle undergoes a tumbling
motion, with the frequency getting lower as the Reynolds number gets higher. When the Reynolds numbers become even higher, i.e., Re = 1.6
and 2 (lower panel), the tumbling motion is inhibited, and the vesicle returns to tank-treading motion with an almost steady inclination angle θ .

more effective. For all the viscosity contrasts considered
here, however, we surprisingly observe that a further increase
of Reynolds number inhibits tumbling motion in favor of
tank-treading motion; see each row of Table I. This inhibition
of tumbling motion in a flow with high Reynolds number
agrees well with the recent results in Ref. [28].

Although a tank-treading motion is favorable in a high
Reynolds number flow, as the viscosity contrast λ increases
to reach some critical value λc, there occurs a transition from
tank-treading to tumbling even in a high Reynolds number
flow. Figure 9 compares the tumbling motions of vesicles
with the reduced area V = 0.5 in two different situations:
The vesicle in the upper panels has Re = 0.008 and λ = 2.75,
and the vesicle in the lower panels has Re = 1.6 and λ = 55.
The times are selected when the vesicle has similar inclination
angles for the two cases. Both the vesicles initially have the

same configuration which includes a concave part around
their center; see the upper panels. Whereas the concave
part is kept in the low Reynolds number flow (upper), it is
almost straightened in the high Reynolds number flow (lower).
Even though vesicles with a high Reynolds number and a
large viscosity contrast go through a large deformation as
shown in the lower panels, their length and interior area are
preserved well, and the velocity field maintains the desirable
characteristic of the shear flow. This implies that the the
simulations with a high Reynolds number and a large viscosity
contrast are stable.

Figure 10 shows the numerical prediction of critical
viscosity contrast λc versus the reduced area V for various
Reynolds numbers. Given a reduced area, as the Reynolds
number increases, the critical viscosity contrast λc for the
tank-treading/tumbling transition increases as well. Whereas

TABLE I. The tumbling frequency in the tumbling regime (TB) and the steady inclination angle θ in the tank-treading regime (TT) for
various Reynolds numbers Re and viscosity contrasts λ.

Re = 0.008 0.4 0.8 1.6 2.0

λ = 5 5.36 × 10−2 (TB) 10.5 (TT) 21.4 (TT) 23.9 (TT) 25.6 (TT)
10 8.79 × 10−2 (TB) 6.79 × 10−2 (TB) 12.8 (TT) 17.9 (TT) 20.6 (TT)
15 9.65 × 10−2 (TB) 8.10 × 10−2 (TB) 4.40 × 10−2 (TB) 11.5 (TT) 17.1 (TT)
20 10.2 × 10−2 (TB) 8.68 × 10−2 (TB) 5.59 × 10−2 (TB) 3.66 × 10−2 (TB) 13.8 (TT)
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FIG. 9. The comparison of the tumbling motion of a vesicle with the reduced area V = 0.5 at the times when the vesicles have similar
inclination angles. The vesicle in the upper panels has Re = 0.008 and λ = 2.75, and the vesicle in the lower panels has Re = 1.6 and λ = 55.
Whereas the vesicle in a low Reynolds number flow keeps its initial concave part, the vesicle in a high Reynolds number flow loses it and
experiences a large deformation.

the increment is so small that the critical viscosity contrasts
are almost indistinguishable when the Reynolds number is
below 0.08, it becomes pronounced with Re > 0.08, in which
case, the increment of critical viscosity contrast is steeper for
vesicles with small reduced areas than for vesicles with large
reduced areas.

It is also interesting to note that for Reynolds numbers Re =
0.8, 1.2, and 1.6, the critical viscosity contrast decreases as the
reduced area increases up to about V = 0.9. This behavior is
completely different from that in the case of Reynolds numbers

Re = 0.008,0.08, and 0.4, where the critical viscosity contrast
is an increasing function of the reduced area. The latter behav-
ior was generally observed in previous studies on the transition
of vesicle dynamics in a shear flow [5–12,15,16]. We attribute
this significantly different behavior between the present
simulation results and the previous results in the literature
to the difference of Reynolds numbers and thus the inertial
effects.

In summary, whereas a flattened vesicle with a small
reduced area V tumbles more easily than a swollen one
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FIG. 10. The critical viscosity contrast λc versus the reduced area for various Reynolds numbers. For a low Reynolds number flow
(Re � 0.4), the critical viscosity contrast increases as the reduced area increases. However, for Reynolds number Re � 0.8, the critical
viscosity contrast decreases as the reduced area increases up to about V = 0.9. For each reduced area, the higher the Reynolds number gets,
the higher the critical viscosity contrast is.
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with a large V in the Stokes flow regime, the former
tumbles with more difficulty than the latter in a slightly high
[O(1)] Reynolds number flow. This unexpected change of
the tumbling tendency with respect to the reduced area is
discovered in our simulations for the first time, to the best
of our knowledge. Even though the inhibition of tumbling
motion in a flow with high Reynolds number was recently
observed in Ref. [28], the authors in Ref. [28] focused on and
simulated a vesicle with one reduced area V = 0.82 only. Here,
however, we not only verify the inhibition of tumbling motion
by the inertia effect for vesicles with various reduced areas
from V = 0.5 to 0.95, but we also show that the inhibition
effect is much stronger for flattened vesicles than for swollen
vesicles in a high [O(1)] Reynolds number flow.

V. CONCLUSIONS

We have extended the penalty immersed boundary (pIB)
method to simulate the transitional dynamics of inextensible
vesicle under a shear flow with different viscosity contrast. We
validate the method by performing a convergence study, which
confirms the consistent first-order accuracy for the velocity
field. We have also simulated several tests for two-dimensional

vesicles in a shear flow with various reduced areas and
viscosity contrasts. The simulation results obtained by the
present pIB method are comparable to those in literature.

In order to consider more realistic situations, we have
investigated the transitional dynamics of a vesicle under shear
flow with O(1) Reynolds number. The inertial effect inhibits
the tumbling motion in favor of the tank-treading motion. This
inhibition effect by the inertia is stronger especially when the
reduced area is small.

Future work will include the extension of the present
methodology to study the three-dimensional vesicle dynamics.
The application of the present method to some biological
systems such as red blood cells and drug-carrying capsules
will also be the subject of future work.
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