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A formally second-order accurate immersed boundary method is presented and
tested in this paper. We apply this new scheme to simulate the flow past a circular
cylinder and study the effect of numerical viscosity on the accuracy of the compu-
tation by comparing the numerical results with those of a first-order method. The
numerical evidence shows that the new scheme has less numerical viscosity and is
therefore a better choice for the simulation of high Reynolds number flows with
immersed boundaries.c© 2000 Academic Press

1. INTRODUCTION

Problems of biological fluid mechanics often involve the interaction of a viscous incom-
pressible fluid with an elastic membrane. One can consider this membrane as a boundary
immersed in the fluid. The immersed boundary method was designed to solve this kind
of problem. The main idea is to use a regular Eulerian computational grid for the fluid
mechanics together with a Lagrangian representation of the immersed boundary. The im-
mersed boundary exerts a singular force on the fluid and at the same time moves at the local
fluid velocity. The interaction between the fluid and immersed boundary can be modeled
by a well chosen discretized approximation to the Dirac delta function, which is called a
discrete delta function. This approach has been applied successfully to problems of blood
flow pattern in the heart [20–24], wave propagation in the cochlea [3, 12], flow in collapsi-
ble tubes [27], aquatic animal locomotion [7–9], platelet aggregation during blood clotting
[8, 11], the flow of suspensions [10, 30], flow and transport in a renal arteriole [1], and the
cell and tissue deformation under shear flow [4, 6, 29].
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One common question about this method is how the numerical scheme performs at dif-
ferent Reynolds numbers. In other words, it is important to check whether the numerics
interfere with the physics, especially for high Reynolds number flow. For example, the
immersed boundary method calls a Navier–Stokes solver as a subroutine, so if the upwind
scheme is used to approximate the nonlinear advection terms in the solver, then the numer-
ical viscosity produced by the computation may not be negligible at high Reynolds
number.

In this paper, we perform numerical simulations of flow past a circular cylinder using
the immersed boundary method. We use this benchmark problem as a test of two different
schemes. One of them is a new scheme, in which most (but not all) aspects of the method
are second-order accurate. Our interests are not only to demonstrate the validity of the
methodology but also to study the effect of numerical viscosity on the accuracy of high
Reynolds number flow computations. It is important to note that our aim is to improve
the immersed boundary methodology, which is typically applied to problems in which the
boundary moves a lot. We are not trying to compete with other methods such as virtual
boundary method for fixed boundary problems [13, 14, 28]. The reason why we choose a
fixed boundary problem (flow past a circular cylinder) is that this is a problem for which
the Reynolds number dependence of various important quantities is known, both from
experiments and from reliable numerical simulations.

In Section 2, we review the mathematical formulation and the numerical scheme of
the immersed boundary method. In Section 3, we introduce a new, formally second-order
accurate scheme which will be used in a later section. In Section 4, we simulate the flow
past a circular cylinder using those two different schemes and compare the results with
experimental works. Conclusions are discussed in Section 5.

2. REVIEW OF THE IMMERSED BOUNDARY METHOD

For simplicity, we consider the model problem of a viscous incompressible fluid in a two-
dimensional square domainÄ containing an immersed massless boundary in the form of
a simple closed curve0 [25], the configuration of which will be given in parametric form,
X(s, t), 0≤ s≤ Lb, X(0, t)=X(Lb, t), wheres tracks a material point of the immersed
boundary. The equations of motion of the system are

ρ

(
∂u
∂t
+ u · ∇u

)
+∇ p = µ1u+ f (1)

∇ · u = 0 (2)

f(x, t) =
∫ Lb

0
F(s, t)δ(x− X(s, t)) ds (3)

∂X(s, t)
∂t

= u(X(s, t), t) =
∫
Ä

u(x, t)δ(x− X(s, t)) dx (4)

F(s, t) = S(X(·, t), t). (5)

Herex= (x, y), u(x, t)= (u1(x, t), u2(x, t)) is the fluid velocity andp(x, t) is the fluid
pressure. The coefficientsρ andµ are the constant fluid density and viscosity. The force
density (with respect todx= dx dy) acting on the fluid isf(x, t)= ( f1(x, t), f2(x, t)),
while the boundary force density (with respect tods) is F(s, t)= (F1(s, t), F2(s, t)).
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Equations (1)–(2) are the familiar Navier–Stokes equations of a viscous incompressible
fluid. Equations (3)–(4) represent the interaction between the immersed boundary and the
fluid; the Dirac delta function in these equations is two-dimensional; thusδ(x)= δ(x)δ(y).
In Eq. (3), the force density is applied to the fluid by the immersed boundary, while in Eq. (4),
the immersed boundary is carried along with the fluid. Equation (5) states that the boundary
force on the particular segment at timet is determined by the boundary configuration at time
t , where the functionS satisfies a generalized Hooke’s law if the boundary is elastic. The
explicit time dependence in this relationship allows for the possibility of an active boundary,
like a muscle, the elasticity of which is time dependent. In our application, however,Swill
represent a stiff passive force which tends to keep the boundary very close to a circular
configuration.

Since the boundary forceF(s, t) is integrated with a two-dimensional Dirac delta function
over a one-dimensional curve0, the force densityf(x, t) is a one-dimensional singular Dirac
delta function. Mathematically,f(x, t) can be viewed as a distribution function whose action
on any test functionw(x, t) is defined by

〈f,w〉 =
∫
Ä

f(x, t) · w(x, t) dx

=
∫
Ä

∫ Lb

0
F(s, t)δ(x− X(s, t)) ds · w(x, t) dx

=
∫ Lb

0
F(s, t) ·

∫
Ä

w(x, t)δ(x− X(s, t)) dx ds

=
∫ Lb

0
F(s, t) · w(X(s, t), t) ds.

In particular, if we choosew(x, t) to be the velocityu(x, t), then the above identity implies
that the total work done by the immersed boundary is equal to the total work done on the
fluid.

Numerical scheme.The immersed boundary method is a mixedEulerian–Lagrangian
finite difference method for computing the flow interacting with an immersed boundary. So
we need two distinct discretized grids: the regularlattice pointscover the whole fluid domain
and theboundary pointsdiscretize the immersed boundary. For simplicity, let the fluid
domainÄ= [0, L]× [0, L] and the fluid variables be defined on a fixedN× N Euleriangrid
labeled asx= (xi , yj )= (ih, jh) for i , j = 0, 1, . . . , N− 1, whereh=1x=1y= L

N is the
mesh width. On the other hand, we use another set ofM LagrangianpointsX= (Xk,Yk)

for k= 0, 1, . . . ,M − 1 to discretize the immersed boundary with the initial boundary mesh
width1s= Lb/M . The boundary force is defined on these Langrangian points. It is very
important to note that the lattice points are fixed but the boundary points are moving, and
those two sets of points usually do not coincide with each other.

Let D+, D−, D0 denote the forward, backward, and centered spatial difference operators
defined on the fluid variables. As in Eqs. (1)–(5), we shall use lower-case variables to
represents values defined on the lattice points, and upper-case variables to represent values
on the boundary points. The superscript on a variable represents the time step index. Thus,
un(x) andXn(s) are the approximations ofu(x, n1t) andX(s, n1t), respectively. At the
beginning of the time step, the (un(x), Xn(s)) are given, so we need to march to (un+1(x),
Xn+1(s)).
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The simplest version of the immersed boundary method is anexplicitscheme which the
boundary force is computed in the beginning of the time step. It can be done by the following
steps:

(1) Compute the boundary forceFn(s) from the boundary configurationsXn(s) and
apply the force to the fluid,

F n(s) = Sn(Xn), (6)

f n(x) =
∑

s

Fn(s)δh(x− Xn(s))1s, (7)

where the discrete delta function

δh(x) = dh(x)dh(y), (8)

and

dh(r ) =


1

8h (3− 2|r |/h+
√

1+ 4|r |/h− 4(|r |/h)2), |r | ≤ h,

1
8h (5− 2|r |/h−

√
−7+ 12|r |/h− 4(|r |/h)2), h ≤ |r | ≤ 2h,

0, otherwise.

(9)

(2) Solve the Navier–Stokes equations with the force termf n(x) to update the velocity
field un+1(x),

ρ

(
un+1− un

1t
+

2∑
i=1

un
i D±i un

)
= −D0 pn+1+ µ

2∑
i=1

D+i D−i un+1+ f n, (10)

D0 · un+1 = 0, (11)

where the upwind difference operator is defined as

un
i D±i =

{
un

i D−i , un
i > 0,

un
i D+i , un

i < 0,
(12)

i = 1, 2, and where the gradient difference operator is defined as

D0 = (D0
1, D0

2

)
. (13)

(3) Interpolate the new velocity from the lattice into the boundary points, and move
the boundary points to new positionsXn+1(s),

Un+1(s) =
∑

x

un+1(x) δh(x− Xn(s))h2, (14)

Xn+1(s) = Xn(s)+1t Un+1(s), (15)

whereδh is the discrete delta function defined above.
The above scheme is first-order accurate in time and space. In particular, in step (2), the

upwind difference method is used for the spatial discretization of the nonlinear advection
terms, and in step (3), the forward Euler method is used for the time integration of the
boundary equation.
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3. FORMALLY SECOND-ORDER METHOD

In this section, we present a newformally (but not actually, see below) second-order
scheme of the immersed boundary method. The new scheme incorporates the old one, which
is used, however, only in a preliminary way at each time step, to advance the solutions from
time leveln to time leveln+ 1

2.
Preliminary step,

Fn(s) = Sn(Xn), (16)

f n(x) =
∑

s

Fn(s)δh(x− Xn(s))1s, (17)

ρ

(
un+1/2− un

1t/2
+

2∑
i=1

un
i D±i un

)
= −D0 p̃n+1/2+ µ

2∑
i=1

D+i D−i un+1/2+ f n, (18)

D0 · un+1/2 = 0, (19)

Xn+1/2(s)− Xn(s)

1t/2
=
∑

x

un+1/2(x)δh(x− Xn(s)) h2. (20)

Onceun+1/2 andXn+1/2 are known, we use them to take a full step from time leveln to
time leveln+ 1, as follows:

Main step,

F n+1/2(s) = Sn+1/2
(
Xn+1/2

)
, (21)

f n+1/2(x) =
∑

s

F n+1/2(s)δh
(
x− Xn+1/2(s)

)
1s, (22)

ρ

(
un+1− un

1t
+ 1

2

2∑
i=1

(
un+1/2

i D0
i un+1/2+ D0

i

(
un+1/2

i un+1/2
)))

(23)

= −D0 pn+1/2+ 1

2
µ

2∑
i=1

D+i D−i (u
n + un+1)+ f n+1/2,

D0 · un+1 = 0, (24)

Xn+1(s)− Xn(s)

1t
=
∑

x

un + un+1

2
δh
(
x− Xn+1/2(s)

)
h2. (25)

One can see that the Navier–Stokes solver for the fluid equations in the main step of the new
scheme is a time-centered or Crank–Nicolson scheme, in which a skew-symmetric finite
difference discretization is used for the nonlinear convection term. The reason of the choice
for skew-symmetric differencing will be discussed later. The trapezoidal quadrature rule is
applied to the moving boundary equation.

We say that an immersed boundary method hasformalsecond-order accuracy if it would
be second-order accuracy when applied to a problem in which the delta functions are
replaced by fixed smooth functions, independent of the mesh. That is, if instead ofδh we
had a fixed smooth function, independent ofh, and if that same smooth function appeared
instead of the Diracδ function in our original problem formulation, then the above scheme
would be second-order accurate, in space and time. (This is true despite the first-order
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accuracy of the preliminary step, from time leveln to time leveln+ 1/2.) We are not,
however, in that fortunate hypothetical situation, and it has been noted by several authors
[2, 15, 17] that in the actual case of delta function forces applied along a boundary, the
use of the discrete delta function in the boundary-fluid interaction prevents the immersed
boundary method from being more than first-order accurate. This is because the velocity,
although continuous, does not have a continuous derivative across the boundary, and the
discrete delta function provides too much smoothing. We have not overcome this difficulty
here, which is why we say that the method is onlyformally second-order accurate. The
formal second-order accuracy is useful, however, because it reduces numerical viscosity.

The new scheme, like the old one, isexplicit in the computation of the boundary forces.
These must be calculated twice per time step in the new scheme, once from the boundary
configurationXn and again from the boundary configurationXn+1/2.

The motivation for the skew-symmetric differencing of the convection terms is as follows.
Let us consider (as a model problem) the equation of a scalar functionφ transported by an
incompressible fluid with velocityu

φt + u · ∇φ = 0, (26)

∇ · u = 0. (27)

If the boundary conditions are periodic, then‖φ‖2 (the integral of the square ofφ) is
conserved. That is,

d

dt
‖φ‖2 ≡ d

dt

∫
Ä

φ2 dx = 0. (28)

The above equality can be easily derived by using the equations with periodic boundary
conditions and integration by parts.

Equation (28) is satisfied whenφ is a function of continuous variables of time and space.
It is desirable for the discrete solution to satisfy the analogous conservation property. This
is because the weak instability caused by the nonlinear convection term can be avoided
if the discrete convection form satisfies this conservation property and the usual Courant–
Friedrichs–Lewy number condition for linearized stability [26]. Now let us focus only on
the spatial discretization and consider the semi-discrete evolution equation as

φt = Lφ, (29)

whereL is some linear spatial operator. If the spatial difference operatorL in the above
equation is skew-symmetric, then the conservation property (28) holds for the discrete
solution [5].

It is easy to check thatu ·D0 is notskew-symmetric in general, not even if we impose the
conditionD0 · u= 0. Using the incompressibility constraint, we can, however, reformulate
Eq. (26) as

φt + 1

2
(u · ∇φ +∇ · (uφ)) = 0. (30)

Now we can discretize space in the above equation by centered differences and obtain

φt + 1

2
(u · D0φ + D0 · (uφ)) = 0, (31)
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in which the spatial difference operator applied toφ is indeed skew-symmetric, so that
‖φ‖2 is conserved for arbitraryu. To show this, use summation by parts and the periodic
boundary conditions.

4. SIMULATIONS OF A TIME PERIODIC VORTEX STREET

BEHIND A CIRCULAR CYLINDER

The flow around a circular cylinder immersed in a fluid stream is studied as a typical
model problem for separated flows and boundary layer theory. It has been the subject
of many theoretical, experimental, and computational works. Depending on the Reynolds
number, different kind of flow behaviors can be characterized. At a low Reynolds number,
the flow is viscosity dominated and is called a creeping flow. At somewhat higher Reynolds
number (up toRe= 45), two symmetrical standing vortices are formed and attached behind
the cylinder. When the Reynolds number gets higher, these vortices can stretch farther and
farther downstream from the cylinder and eventually become distorted and break apart
to develop an alternating vortex shedding called the K´armán vortex street. For Reynolds
numbers up to 200, this flow is purely laminar and the vortex street is stable and time
periodic. Readers who are interested in more detail about this flow can refer to [18].

4.1. Virtual boundary formulation. In [13, 14], Goldsteinet al.used an approach called
thevirtual boundary methodto simulate the turbulent flow over a modeled riblet-covered
surface and other problems. Their method shares the same spirit with the immersed boundary
method but solves a rigid boundary problem rather than an elastic boundary problem.

The main idea of the virtual boundary method is to treat the body surface as avirtually
existent boundary embedded in the fluid which applies force on the fluid so that the fluid will
be at rest on the surface (no-slip condition). Let us denote the boundary0 (body surface)
by {Xe(s); 0≤ s≤ Lb}. The forceF(s, t) on the boundary is determined by the require-
ment that the fluid velocityu(x, t) should satisfy the no-slip condition on the boundary.
Mathematically, we need to solve the two-dimensional Navier–Stokes equations with some
boundary velocity constraints as

ρ

(
∂u
∂t
+ u · ∇u

)
+∇ p = µ1u+

∫
0

F(s, t)δ(x− Xe(s)) ds, (32)

∇ · u = 0, (33)

0= u(Xe(s), t) =
∫
Ä

u(x, t)δ(x− Xe(s)) dx, (34)

u(x, t)→ u∞ as|x| → ∞. (35)

The “count” of equations and unknowns in this formulation seems reasonable, since we
have introduced two unknown components ofF(s, t) defined on the boundary0 into the the
Navier–Strokes equations in (32) and, at the same time, we have imposed two additional
constraints on the boundary in (34). Since the body force is not knowna priori, it must be
calculated in some feedback way in which the velocity on the boundary is used to determine
the desired force. In the virtual boundary formulation, the force is expressed as

F(s, t) = α
∫ t

0
U(s, t ′) dt′ + βU(s, t), (36)
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whereU is the fluid velocity at these surface points. Whenα andβ are chosen negative
and large enough in magnitude, thenU will stay close to zero. To avoid interpolating the
velocity field from grid points to the boundary points, Goldsteinet al. let the boundary
points coincide with grid points. However, in order to generate a smooth surface rather
than a step-like surface, the boundary force is multiplied by a narrow Gaussian distribution
so that the nearby grid points can receive a part of force influences. Although this local
smoothing will blur the location of the surface within one grid site, the method can produce
promising results if sufficient spatial resolution is used.

More recently, Saiki and Biringen [28] applied the virtual boundary method to simulate
the flow past a cylinder. They used an area-weighted average function to interpolate the
fluid velocity to the boundary points and extrapolate the boundary force back to the grid
points. This fluid-boundary interaction process is different from Goldsteinet al.and is more
like the immersed boundary method. It turns out that the area-weighted average function is
nothing but the discrete hat function in [2]. In [28], very good agreement is found between
their calculations and previous computational and experimental results for steady and time-
dependent flow at low to moderate Reynolds numbers.

In the following section, we perform similar simulations as in [28]. It is important to note
that we choose the same problem as a test of two different immersed boundary methods.
However, there are two differences between Saikiet al.and our present calculations. First,
all simulations are done using the spectral method in [28] but a finite difference method is
used for our calculations. Second, in our immersed boundary computations, the boundary
points are moving slightly but in theirs the boundary points are actually fixed in space.

4.2. Immersed boundary computation.In order to simulate the flow around a rigid
boundary using the immersed boundary method, we should allow the boundary to move a
little bit rather than be fixed. As long as the immersed boundaryX(s, t) stays close to the
body surfaceXe(s), we can rewrite Eqs. (32)–(35) as

ρ

(
∂u
∂t
+ u · ∇u

)
+∇ p = µ1u+

∫
0

F(s, t)δ(x− X(s, t)) ds, (37)

∇ · u = 0, (38)

∂X(s, t)
∂t

= u(X(s, t), t) =
∫
Ä

u(x, t)δ(x− X(s, t)) dx, (39)

u(x, t)→ u∞ as|x| → ∞. (40)

Now we need to choose an appropriate forcing termF(s, t) in Eq. (37) to make sure that
the boundary points will stay close to the body surface. One straightforward choice is

F(s, t) = κ(Xe(s)− X(s, t)), (41)

whereκ is a positive constant such thatκÀ 1. The direct interpretation of Eq. (41) is that
we connect the boundary pointsX to fixed equilibrium pointsXe with a very stiff spring
whose stiffness constant isκ. So if the boundary points fall away from the desired location,
the force on the spring will pull these boundary points back. Thus, as time goes on, we can
expect that the boundary points will always be close to their desired configurations. It is
important to note that the force in Eq. (41) is very similar to the one used for the virtual
boundary method in Eq. (36). Actually, the force term chosen in (41) is a particular case of
(36) withβ = 0.
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In order to mimic the real situation of the flow around a circular cylinder, we need to
choose a relative large computational fluid domain (compared to the size of the cylinder) and
modify the inflow velocity field of this domain (similar to imposing the far field velocity).
Despite the misbehavior of the flow near the computational boundary due to the periodicity
of the method, we can still capture the fluid behavior such as the vortex shedding behind
the cylinder.

Let us explain more carefully how to simulate this situation. As mentioned before, we
consider the surface of the cylinder as a rigid boundary immersed in a fluid. In the simulation,
this boundary will move slightly, butκ will be chosen so large that the motion will not be
noticeable. Thus, we need to solve Eqs. (37)–(39) by the immersed boundary method. To
start the motion, we set the initial velocity to be the far field velocityu∞ everywhere in
the fluid domain. Once the nonzero velocity is applied to the immersed boundary points, a
force field is created by the movement of these points. To maintain the far field boundary
condition, we proceed as follows: After each time step, we simply modify the velocity in
a thin vertical stripÄB running along the left (inflow) side of the computational domain
to beu∞. This modification can be thought of as the application of a force to the fluid,
the force being confined to the stripÄB and being chosen by a feedback mechanism to
be just sufficient to make the velocity equal to the prescribed far field velocity within that
strip. Throughout the paper, we assume that the far field velocity points in thex direction,
u∞= (u∞, 0).

The Reynolds number in this flow is defined as

Re= ρu∞D

µ
, (42)

whereD is the diameter of the cylinder. We can also define the dimensionless time scale as

T = u∞t

(1/2)D
. (43)

The principal result of our computation is the velocity field. For output purposes, though,
we can easily compute the drag and lift coefficients, and the Strouhal number.

Drag coefficient. The drag force on a body submerged in a stream arises from two
sources, the shear stress and the pressure distribution along the body. The dimensionless
drag coefficient is defined by

CD = FD

(1/2)ρu2∞D
, (44)

whereFD is the drag force. In the present computation, we have the opportunity to evaluate
the drag forceFD in three different ways:

(1) We can determine the drag force simply by looking at thex component of the
force applied by the boundary to the fluid. This of course, is equal to the negative of the
drag, by Newton’s third law of motion. Thus,

FD = −
∫
Ä

f1 dx = −
∫ Lb

0
F1 ds, (45)

where f1 andF1 are thex-components of the force densitiesf andF, respectively.
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(2) As mentioned before, after each time step, we modify the velocity inÄB to equal
to u∞. So the change of thex-component of the momentum can be calculated by

1m=
∫
ÄB

ρ(u∞ − u1) dx. (46)

Since the rate of momentum change is simply the force, the drag force can also be computed
by

FD = 1m

1t
, (47)

where1t is the time step size in the computation.
(3) The integral form of thex-component of the momentum equations on any fluid

domainÄ0 can be described by

∂

∂t

∫
Ä0

ρu1 dx+
∫
∂Ä0

ρu1u · n ds

= −
∫
Ä0

pn1 dx+
∫
∂Ä0

µ

(
∂u1

∂xj
+ ∂u j

∂x1

)
nj ds+

∫
Ä0

f1 dx. (48)

When the flow becomes steady, the above equation reduces to∫
∂Ä0

ρu1u · n ds= −
∫
Ä0

pn1 dx+
∫
∂Ä0

µ

(
∂u1

∂xj
+ ∂u j

∂x1

)
nj ds+

∫
Ä0

f1 dx. (49)

So the drag force can be calculated by

FD = −
∫
Ä0

f1 dx = −
∫
∂Ä0

ρu1u · n ds−
∫
∂Ä0

pn1 ds+
∫
∂Ä0

µ

(
∂u1

∂xj
+ ∂u j

∂x1

)
nj ds.

(50)

Therefore, we simply pick any square domainÄ0 enclosing the cylinder and compute the
line integrals of the above equation to obtain the drag force.

Lift coefficient. When the body starts shedding a vortex, a lift force on the body is
generated by the fluid. The dimensionless lift coefficient is defined by

CL = FL

(1/2)ρu2∞D
, (51)

whereFL is the lift force. As in the drag force calculation, the simplest way to measure
the lift force in the computation is the direct calculation of they-component of the force
density. That is,

FL = −
∫
Ä

f2 dx = −
∫ Lb

0
F2 ds, (52)

where f2 andF2 are they-components of the force densitiesf andF, respectively.
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Strouhal number. When the steady flow becomes unstable and the body starts shed-
ding vortices, the frequency with which the vortices are shed from the body can be made
dimensionless by the formula

St= fq D

u∞
, (53)

where fq is the vortex shedding frequency. The new parameterSt is called the Strouhal
number. In our computation, it is easy to measure the dimensionless time periodTp between
vortices shedding. Thus, using the fact thatfq= 1/Tp and the definition of dimensionless
time scale in Eq. (43),St is measured by

St= 2

Tp
. (54)

Computation details. We choose a large computational domainÄ= [0, 8]× [0, 8] and
a cylinder with diameterD= 0.30 whose center is located at (1.85, 4.0); thus, the cylinder
is very small compared toÄ (the size of the cylinder diameter versus the size of the domain
is about 1 : 27). The fluid density isρ= 1.0 and the far field velocity isu∞= 1.0. The fluid
viscosity is varied to achieve the desired Reynolds number in any particular computation;
see Eq. (42). In [19], the authors use the preconditioned multigrid method to simulate this
flow as a test problem for their schemes and also collect very detailed experimental and
numerical results for comparison. As in [19], three different Reynolds numbersRe= 100,
150, 200 are considered and our numerical results are compared with the experimental
results given there.

The computation starts with a random perturbation of the initial velocity in order to speed
up the transition to alternate vortex shedding and thereby save computing time. This initial
perturbation affects only the onset time of the vortex shedding.

Table I provides the results for these two schemes with different parameters such as mesh
width h, time step1t , and the stiffness constantκ. Scheme 1 is the first-order method,
and Scheme 2 is the present, formal second-order method. The maximum displacement is
measured by the maximum norm of all boundary points deviated from their initial positions
divided by the radius of the cylinder. This is a measure of the relative motion of the cylinder
surface. The stiffnessκ is chosen so that the maximum displacement of any boundary point
is within 5%. Once the stiffness constantκ is chosen, the time step is determined by the
stability constraint1t ≈C

√
h/κ which is derived in [16]. The drag and lift coefficients are

time-averaged since the flow is unsteady. All calculations are up to timeT = 240.
From Table I, we can see the Strouhal number is getting close to the experimental mea-

sured number as the mesh is refined. In the paper of Saiki and Biringen [28], the computed

TABLE I

The Values of the Different Quantities at Re= 100

Method h κ 1t CD CL St Max disp.

Scheme 1 1/64 4.8× 104 1.8× 10−3 1.5406 0.2829 0.133 3.06%
Scheme 2 1/64 4.8× 104 1.8× 10−3 1.5167 0.2904 0.155 4.54%
Scheme 1 1/128 9.6× 104 0.9× 10−3 1.4630 0.3290 0.144 1.51%
Scheme 2 1/128 9.6× 104 0.9× 10−3 1.4473 0.3299 0.165 2.57%
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FIG. 1. Three different measures ((1) — ; (2) — ; (3) -·- ) of drag coefficients atRe= 150 for (a) first-order
method and (b) formally second-order method.

Strouhal numbers obtained from different researchers’ computations ranged from 0.16–
0.18 atRe= 100. The Strouhal numbers computed by the formally second-order method
have a good agreement with experimental measured data. As for the drag coefficients, our
present results are higher than the experimental and some previous computed data [28].
However, in our numerical experiments, if we choose the computational domain larger,
the drag coefficient becomes smaller. This is not surprising, since the boundary influence
becomes weaker when the domain is larger. Furthermore, as the mesh is refined, the drag
coefficient becomes smaller as well. Note that our immersed boundary approach has the
advantage such that the drag and lift coefficients can be measured more easily than other
methods.

Figure 1 shows the time evolution of the drag coefficients measured by three different
methods forRe= 150. We can see that the three measures of computed drag coefficients
are almost the same for the formal second-order method but different for the first-order
method. This suggests that our new scheme is more accurate than the first-order method,
despite the fact that the Dirac delta approximation will still result in some loss of accuracy.
The time evolution of the lift coefficients is shown in Fig. 2.

It is interesting to note in these figures that the oscillation frequency of the drag is twice
that of the lift (vortex shedding frequency). This is because the vortex sheds from upper and

FIG. 2. The lift coefficients atRe= 150 for (a) first-order method and (b) formally second-order method.
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TABLE II

The Comparison of the Numerical and Experimental Strouhal Number

Re Scheme 1 Scheme 2 Williamson (Exp.) Roshko (Exp.)

100 0.144 0.165 0.166 0.164
150 0.156 0.184 0.183 0.182
200 0.163 0.190 0.197 0.190

lower surfaces alternately (thus, the lift changes sign alternately), but the upper and lower
vortex shedding makes almost the same contribution to the drag.

Table II shows the comparison of the computed Strouhal number with experimental data
by Williamson and Roshko, as reported in [19]. We can see that the numerical results of the
formally second-order method are in excellent agreement with the experimental data. In the
numerical results of the first-order method, the Strouhal number (dimensionless frequency
of vortex shedding) is about 20% too low. We attribute this to the numerical viscosity
of the first-order method, which seems to be much reduced in the formally second-order
computation.

The instantaneous vorticity contours of vortex shedding computed at the final time by
those methods are plotted in Fig. 3. We can see the K´armán vortex street of the flow around a
circular cylinder in these vorticity contour lines. The higher Strouhal number of the formally
second-order computation is evident in the closer spacing between the vortices in the lower

FIG. 3. Vorticity contours of the flow around a cylinder atRe= 150. First-order method (top); formally
second-order method (bottom).
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part of the figure. Notice, too, that the vortices themselves are considerably more diffuse
in the first-order results (top) than in the formally second-order results (bottom). It seems
likely that this is a consequence of the higher numerical viscosity of the first-order method.

5. CONCLUSION

In this paper, we have proposed a new, formally second-order accurate scheme for the
immersed boundary method, and we have tested this methodology by applying it to the
problem of flow past a circular cylinder. This test problem was chosen because of the avail-
ability of experimental data over a substantial range of Reynolds number, with significant
Reynolds number dependent effects that one would like a numerical method to replicate.
The previous, first-order accurate scheme of the immersed boundary method has also been
tested for comparison.

The most significant differences between the old and the new scheme appear in compu-
tations where the flow is unsteady despite the steady boundary conditions, due to alternate
vortex shedding from the upper and lower surfaces of the cylinder. Here the Strouhal number
(dimensionless frequency of vortex shedding) is about 20% too low in the case of the first-
order scheme, but agrees very well with experiment in the case of the formally second-order
scheme. In vorticity plots, the shed vortices look considerably more diffuse in the first-order
results than in the formally second-order results. Another difference between these com-
putations is that various measures of drag disagree with each other by as much as 20% in
the first-order results but are in excellent mutual agreement in the formally second-order
results.

Despite its lack of true second-order accuracy, the formally second-order scheme intro-
duced in this paper produces results that are closer to the available experimental data than
the previous first-order scheme. This appears to be primarily because the new scheme has
less numerical viscosity than the old one. This is a considerable benefit; it helps us to be
able to simulate higher Reynolds number flow in immersed boundary problems.
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