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A formally second-order accurate immersed boundary method is presented and
tested in this paper. We apply this new scheme to simulate the flow past a circular
cylinder and study the effect of numerical viscosity on the accuracy of the compu-
tation by comparing the numerical results with those of a first-order method. The
numerical evidence shows that the new scheme has less numerical viscosity and is
therefore a better choice for the simulation of high Reynolds number flows with
immersed boundaries g 2000 Academic Press

1. INTRODUCTION

Problems of biological fluid mechanics often involve the interaction of a viscous incot
pressible fluid with an elastic membrane. One can consider this membrane as a bour
immersed in the fluid. The immersed boundary method was designed to solve this k
of problem. The main idea is to use a regular Eulerian computational grid for the flt
mechanics together with a Lagrangian representation of the immersed boundary. The
mersed boundary exerts a singular force on the fluid and at the same time moves at the
fluid velocity. The interaction between the fluid and immersed boundary can be mode
by a well chosen discretized approximation to the Dirac delta function, which is callec
discrete delta function. This approach has been applied successfully to problems of b
flow pattern in the heart [20—24], wave propagation in the cochlea [3, 12], flow in collap:
ble tubes [27], aquatic animal locomotion [7-9], platelet aggregation during blood clotti
[8, 11], the flow of suspensions [10, 30], flow and transport in a renal arteriole [1], and
cell and tissue deformation under shear flow [4, 6, 29].
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One common question about this method is how the numerical scheme performs at
ferent Reynolds numbers. In other words, it is important to check whether the numel
interfere with the physics, especially for high Reynolds number flow. For example, t
immersed boundary method calls a Navier—Stokes solver as a subroutine, so if the up\
scheme is used to approximate the nonlinear advection terms in the solver, then the nu
ical viscosity produced by the computation may not be negligible at high Reynol
number.

In this paper, we perform numerical simulations of flow past a circular cylinder usir
the immersed boundary method. We use this benchmark problem as a test of two diffe
schemes. One of them is a new scheme, in which most (but not all) aspects of the me
are second-order accurate. Our interests are not only to demonstrate the validity of
methodology but also to study the effect of numerical viscosity on the accuracy of hi
Reynolds number flow computations. It is important to note that our aim is to impro
the immersed boundary methodology, which is typically applied to problems in which t
boundary moves a lot. We are not trying to compete with other methods such as virt
boundary method for fixed boundary problems [13, 14, 28]. The reason why we choos
fixed boundary problem (flow past a circular cylinder) is that this is a problem for whic
the Reynolds number dependence of various important quantities is known, both fr
experiments and from reliable numerical simulations.

In Section 2, we review the mathematical formulation and the numerical scheme
the immersed boundary method. In Section 3, we introduce a new, formally second-ot
accurate scheme which will be used in a later section. In Section 4, we simulate the f
past a circular cylinder using those two different schemes and compare the results \
experimental works. Conclusions are discussed in Section 5.

2. REVIEW OF THE IMMERSED BOUNDARY METHOD

For simplicity, we consider the model problem of a viscous incompressible fluid in a tw
dimensional square domafa containing an immersed massless boundary in the form ¢
a simple closed curvE [25], the configuration of which will be given in parametric form,
X(s,t),0<s<Lp, X(0,t)=X(Lp, t), wheres tracks a material point of the immersed
boundary. The equations of motion of the system are

p<%+u~Vu>+Vp=MAu+f Q)
V.u=0 2
Lp
f(x,t) = / F(s, t)6(x — X(s, 1)) ds 3)
0
ax;?t) — UX(s. 1), 1) = / (X, DX — X(s. 1)) dx 4)
Q
F(s,t) = S(X(-, 1), 1). (5)

Herex = (X, y), u(x, t) = (uy(x, t), ua(x, t)) is the fluid velocity andp(x, t) is the fluid
pressure. The coefficientsand u are the constant fluid density and viscosity. The force
density (with respect talx =dx dy) acting on the fluid isf(x, t) = (fi(x, t), fa(x, 1)),
while the boundary force density (with respectits) is F(s, t) = (F1(s, 1), Fa(s, t)).
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Equations (1)—(2) are the familiar Navier—Stokes equations of a viscous incompress
fluid. Equations (3)—(4) represent the interaction between the immersed boundary anc
fluid; the Dirac delta function in these equations is two-dimensional;&fs= 5 (X)3 (y).
InEq. (3), the force density is applied to the fluid by the immersed boundary, while in Eq. (
the immersed boundary is carried along with the fluid. Equation (5) states that the bount
force on the particular segment at titris determined by the boundary configuration at time
t, where the functiorg satisfies a generalized Hooke’s law if the boundary is elastic. Tt
explicittime dependence in this relationship allows for the possibility of an active bounda
like a muscle, the elasticity of which is time dependent. In our application, how@&weit,
represent a stiff passive force which tends to keep the boundary very close to a circ
configuration.

Since the boundary fordg(s, t) is integrated with a two-dimensional Dirac delta function
over aone-dimensional cur¥e the force densitf(x, t) is a one-dimensional singular Dirac
delta function. Mathematicall§(x, t) can be viewed as a distribution function whose actior
on any test functiomv(x, t) is defined by

(f, w) =/f(x, t) - w(x, t)dx
Q
Lp

=// F(s,1)d(x — X(s, 1)) ds- w(x, t) dx
QJO
Lp

=/ F(s,t)-/W(x,t)a(x—X(s,t))dxds
JO Q

Lp
:/ F(s, t) - w(X(s, t),t)ds.
0

In particular, if we choos®@/(x, t) to be the velocity(x, t), then the above identity implies
that the total work done by the immersed boundary is equal to the total work done on
fluid.

Numerical scheme.The immersed boundary method is a mi¥eaerian—-Lagrangian
finite difference method for computing the flow interacting with an immersed boundary.
we need two distinct discretized grids: the regld#tice pointscover the whole fluid domain
and theboundary pointgiscretize the immersed boundary. For simplicity, let the fluic
domain2 =[0, L] x [0, L]and the fluid variables be defined on afix¢ck N Euleriangrid
labeled ax = (x;, y;) = (ih, jhyfori, j=0,1,..., N—1,whereh=Ax=Ay = ﬁ isthe
mesh width. On the other hand, we use another s&t dfagrangianpoints X = (X, Yk)
fork=0,1,..., M — 1todiscretize the immersed boundary with the initial boundary mes
width As=Ly/M. The boundary force is defined on these Langrangian points. It is ve
important to note that the lattice points are fixed but the boundary points are moving, :
those two sets of points usually do not coincide with each other.

Let DT, D—, D° denote the forward, backward, and centered spatial difference operat
defined on the fluid variables. As in Egs. (1)—(5), we shall use lower-case variables
represents values defined on the lattice points, and upper-case variables to represent \
on the boundary points. The superscript on a variable represents the time step index.
u"(x) andX"(s) are the approximations af(x, nAt) andX(s, nAt), respectively. At the
beginning of the time step, tha'((x), X"(s)) are given, so we need to march t6'{(x),
Xr‘H—l(S))_
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The simplest version of the immersed boundary method exaticit scheme which the
boundary force is computed in the beginning of the time step. It can be done by the follow
steps:

(1) Compute the boundary ford€'(s) from the boundary configuration§'(s) and
apply the force to the fluid,

F'(s) = S"(X"), (6)
700 = > F'(9)8n(x — X"(9)As, (7)

where the discrete delta function

8h(X) = dn(X)dh(y), (8)
and
&B=2r|/h+/1+4lr|/h—4(r|/h)?), Irl <h,
Oh(r) = (5 —2Irl/h—/=7+12r|/h—4(r|/h)», h=<r[<2h, (9)
0, otherwise

(2) Solve the Navier—Stokes equations with the force t€Ytx) to update the velocity
field u"1(x),
l’|n+1 —un 2 2
Pl =+ > ouDifu" | = —D°p™t 4+ 1Y DD U4, (10)
i=1 i=1
D%.u"t =0, (12)

where the upwind difference operator is defined as

_— u'Dy, u > 0,
Ui Di = N+ n (12)
Ui Di . Lli < 0,
i =1, 2, and where the gradient difference operator is defined as
D° = (DY, D). (13)

(3) Interpolate the new velocity from the lattice into the boundary points, and mo
the boundary points to new positioK§*1(s),

U(s) = > U™ (%) 8n(x — X" (), (14)

X" (s) = X"(s) + At UM (s), (15)

whereé, is the discrete delta function defined above.

The above scheme is first-order accurate in time and space. In particular, in step (2)
upwind difference method is used for the spatial discretization of the nonlinear advect
terms, and in step (3), the forward Euler method is used for the time integration of 1
boundary equation.
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3. FORMALLY SECOND-ORDER METHOD

In this section, we present a ndarmally (but not actually, see below) second-order
scheme of the immersed boundary method. The new scheme incorporates the old one, v
is used, however, only in a preliminary way at each time step, to advance the solutions f
time leveln to time leveln + 3.

Preliminary step

F'(s) = S"(X"), (16)
f(x) = Z F1(9)8n(x — X"(s))As, (17)
untyz —yn ) 0 =n-+1/2 2 + = N+1/2
p( AL2 +ZuD ):—Dp +M§Di D u +f", (18)
DO X n+1/2 — 0’ (19)
X"M2(s) — X"(s) n+1/2 2
A = Zu (X)8h(x — X"(s)) h?. (20)

Onceu%2 andX"*+%2 are known, we use them to take a full step from time levi
time leveln + 1, as follows:

Main step
FrHl/2(g) — gn+l/2 (xn+1/2)’ (21)
fn+1/2(x) — Z F n+1/2(s)5h (X _ Xn+1/2(s)) AS, (22)
LIn+1 un o 1 zz: ”+1/2D0 nt1/2 | DO( n+1/2 n+l/2)) (23)
P 2 i=1
_DOpMHY/2 4 1M Z D" D (u" + untty 4 fnL2,
i=1
DOyl — (24)
XML(s) — X"(9) u" 4ttt N4l
XMi(s) = XNs) u'+ut B /2 2
X U gy

One can see that the Navier—Stokes solver for the fluid equations in the main step of the
scheme is a time-centered or Crank—Nicolson scheme, in which a skew-symmetric fi
difference discretization is used for the nonlinear convection term. The reason of the ch
for skew-symmetric differencing will be discussed later. The trapezoidal quadrature rule
applied to the moving boundary equation.

We say that an immersed boundary methodfbasal second-order accuracy if it would
be second-order accuracy when applied to a problem in which the delta functions
replaced by fixed smooth functions, independent of the mesh. That is, if instéaavef
had a fixed smooth function, independentpfind if that same smooth function appearec
instead of the Diraé function in our original problem formulation, then the above schem
would be second-order accurate, in space and time. (This is true despite the first-o
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accuracy of the preliminary step, from time lewveto time leveln+1/2.) We are not,
however, in that fortunate hypothetical situation, and it has been noted by several autl
[2, 15, 17] that in the actual case of delta function forces applied along a boundary,
use of the discrete delta function in the boundary-fluid interaction prevents the immer
boundary method from being more than first-order accurate. This is because the velo
although continuous, does not have a continuous derivative across the boundary, ant
discrete delta function provides too much smoothing. We have not overcome this difficL
here, which is why we say that the method is ofdymally second-order accurate. The
formal second-order accuracy is useful, however, because it reduces numerical viscos

The new scheme, like the old onegigplicitin the computation of the boundary forces.
These must be calculated twice per time step in the new scheme, once from the boun
configurationX" and again from the boundary configuratdft?/2,

The motivation for the skew-symmetric differencing of the convection terms is as follow
Let us consider (as a model problem) the equation of a scalar fungti@msported by an
incompressible fluid with velocity

¢t+U'V¢=0, (26)
V-u=0. (27)

If the boundary conditions are periodic, théa|? (the integral of the square af) is
conserved. That is,

d 2_1 24y
Sl = dt/9¢ dx = 0. (28)

The above equality can be easily derived by using the equations with periodic bounc
conditions and integration by parts.

Equation (28) is satisfied wheis a function of continuous variables of time and space
It is desirable for the discrete solution to satisfy the analogous conservation property. 1
is because the weak instability caused by the nonlinear convection term can be avo
if the discrete convection form satisfies this conservation property and the usual Courz
Friedrichs—Lewy number condition for linearized stability [26]. Now let us focus only o
the spatial discretization and consider the semi-discrete evolution equation as

¢t = L¢7 (29)

wherelL is some linear spatial operator. If the spatial difference opetatorthe above
equation is skew-symmetric, then the conservation property (28) holds for the discr
solution [5].

Itis easy to check that- DC is notskew-symmetric in general, not even if we impose the
conditionDC - u = 0. Using the incompressibility constraint, we can, however, reformulat
Eq. (26) as

1
b + E(U-V¢+V~(U¢)) =0. (30)

Now we can discretize space in the above equation by centered differences and obtair

o + %(u D% +D° - (ug)) =0, (31)
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in which the spatial difference operator applied¢tds indeed skew-symmetric, so that
l¢11? is conserved for arbitrary. To show this, use summation by parts and the periodi
boundary conditions.

4. SIMULATIONS OF A TIME PERIODIC VORTEX STREET
BEHIND A CIRCULAR CYLINDER

The flow around a circular cylinder immersed in a fluid stream is studied as a typi
model problem for separated flows and boundary layer theory. It has been the suk
of many theoretical, experimental, and computational works. Depending on the Reync
number, different kind of flow behaviors can be characterized. At a low Reynolds numk
the flow is viscosity dominated and is called a creeping flow. At somewhat higher Reync
number (up tdre=45), two symmetrical standing vortices are formed and attached behi
the cylinder. When the Reynolds number gets higher, these vortices can stretch farthel
farther downstream from the cylinder and eventually become distorted and break a
to develop an alternating vortex shedding called tlzertin vortex street. For Reynolds
numbers up to 200, this flow is purely laminar and the vortex street is stable and ti
periodic. Readers who are interested in more detail about this flow can refer to [18].

4.1. Virtual boundary formulation. In [13, 14], Goldsteiret al.used an approach called
thevirtual boundary methodb simulate the turbulent flow over a modeled riblet-covere
surface and other problems. Their method shares the same spirit with the immersed bour
method but solves a rigid boundary problem rather than an elastic boundary problem.

The main idea of the virtual boundary method is to treat the body surfaceigsally
existent boundary embedded in the fluid which applies force on the fluid so that the fluid \
be at rest on the surface (no-slip condition). Let us denote the boulid@drydy surface)
by {X€(s); 0<s< Lp}. The forceF(s, t) on the boundary is determined by the require-
ment that the fluid velocity(x, t) should satisfy the no-slip condition on the boundary.
Mathematically, we need to solve the two-dimensional Navier—Stokes equations with sc
boundary velocity constraints as

p(?}—l: +u- Vu> +Vp = pAu+ /r F(s, 1)8(x — X®(s)) ds, (32)
V.u =0, (33)

0=u(X&s),t) = / ux, t)s(x — X&(s)) dx, (34)

ux,t) — ui as|x| - oc. (35)

The “count” of equations and unknowns in this formulation seems reasonable, since
have introduced two unknown component§d, t) defined on the boundatiyinto the the
Navier—Strokes equations in (32) and, at the same time, we have imposed two additi
constraints on the boundary in (34). Since the body force is not kropriori, it must be
calculated in some feedback way in which the velocity on the boundary is used to detern
the desired force. In the virtual boundary formulation, the force is expressed as

t
F(s,t) = a/ U(s, t) dt’ + UGS, 1), (36)
0
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whereU is the fluid velocity at these surface points. Wheand 8 are chosen negative
and large enough in magnitude, therwill stay close to zero. To avoid interpolating the
velocity field from grid points to the boundary points, Goldstetral. let the boundary
points coincide with grid points. However, in order to generate a smooth surface rat
than a step-like surface, the boundary force is multiplied by a narrow Gaussian distribut
so that the nearby grid points can receive a part of force influences. Although this lo
smoothing will blur the location of the surface within one grid site, the method can produ
promising results if sufficient spatial resolution is used.

More recently, Saiki and Biringen [28] applied the virtual boundary method to simula
the flow past a cylinder. They used an area-weighted average function to interpolate
fluid velocity to the boundary points and extrapolate the boundary force back to the g
points. This fluid-boundary interaction process is different from Goldsteah and is more
like the immersed boundary method. It turns out that the area-weighted average functic
nothing but the discrete hat function in [2]. In [28], very good agreement is found betwe
their calculations and previous computational and experimental results for steady and i
dependent flow at low to moderate Reynolds numbers.

In the following section, we perform similar simulations as in [28]. It is important to not
that we choose the same problem as a test of two different immersed boundary meth
However, there are two differences between Setildl. and our present calculations. First,
all simulations are done using the spectral method in [28] but a finite difference methoc
used for our calculations. Second, in our immersed boundary computations, the boun
points are moving slightly but in theirs the boundary points are actually fixed in space.

4.2. Immersed boundary computatiorin order to simulate the flow around a rigid
boundary using the immersed boundary method, we should allow the boundary to moy
little bit rather than be fixed. As long as the immersed boundgeyt) stays close to the
body surfaceX®(s), we can rewrite Egs. (32)—(35) as

p(‘zl:Jru.Vu) +Vp = uAu+/rF(s, DIX —X(s,H)ds, (37)
V.u =0, (38)

3X;‘:"t) = uX(s, t),t) = /Qu(x, )8 (x — X(s, 1)) dx, (39)
U, t) = Uso as|x| — oo. (40)

Now we need to choose an appropriate forcing tBxs) t) in Eq. (37) to make sure that
the boundary points will stay close to the body surface. One straightforward choice is

F(s, t) = k(X8(s) — X(s, 1)), (41)

wherex is a positive constant such thats> 1. The direct interpretation of Eq. (41) is that
we connect the boundary pointsto fixed equilibrium points<® with a very stiff spring
whose stiffness constantss So if the boundary points fall away from the desired location
the force on the spring will pull these boundary points back. Thus, as time goes on, we
expect that the boundary points will always be close to their desired configurations. |
important to note that the force in Eq. (41) is very similar to the one used for the virtu
boundary method in Eq. (36). Actually, the force term chosen in (41) is a particular case
(36) with g =0.
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In order to mimic the real situation of the flow around a circular cylinder, we need
choose arelative large computational fluid domain (compared to the size of the cylinder)
modify the inflow velocity field of this domain (similar to imposing the far field velocity).
Despite the misbehavior of the flow near the computational boundary due to the periodi
of the method, we can still capture the fluid behavior such as the vortex shedding bel
the cylinder.

Let us explain more carefully how to simulate this situation. As mentioned before, \
consider the surface of the cylinder as arigid boundary immersed in a fluid. In the simulati
this boundary will move slightly, but will be chosen so large that the motion will not be
noticeable. Thus, we need to solve Egs. (37)—(39) by the immersed boundary methoc
start the motion, we set the initial velocity to be the far field velocity everywhere in
the fluid domain. Once the nonzero velocity is applied to the immersed boundary point
force field is created by the movement of these points. To maintain the far field bound
condition, we proceed as follows: After each time step, we simply modify the velocity
a thin vertical stripQg running along the left (inflow) side of the computational domair
to beus,. This modification can be thought of as the application of a force to the flui
the force being confined to the stripg and being chosen by a feedback mechanism t
be just sufficient to make the velocity equal to the prescribed far field velocity within th
strip. Throughout the paper, we assume that the far field velocity points indirection,
Uso = (Ueo, 0).

The Reynolds number in this flow is defined as

pUs D

Re : (42)
"

whereD is the diameter of the cylinder. We can also define the dimensionless time scal

T= Uoot )
(1/2D

(43)

The principal result of our computation is the velocity field. For output purposes, thoug
we can easily compute the drag and lift coefficients, and the Strouhal number.

Drag coefficient. The drag force on a body submerged in a stream arises from tv
sources, the shear stress and the pressure distribution along the body. The dimensic
drag coefficient is defined by

Fo

~ (1/2puz,D’ 49

Co

whereFp is the drag force. In the present computation, we have the opportunity to evalu
the drag forcep in three different ways:

(1) We can determine the drag force simply by looking atxtheomponent of the
force applied by the boundary to the fluid. This of course, is equal to the negative of
drag, by Newton’s third law of motion. Thus,

. Ly
Fp = —/ f]_ dx = —/ F]_dS, (45)
Q 0

where f; andF; are thex-components of the force densitieandF, respectively.
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(2) As mentioned before, after each time step, we modify the velociBgino equal
to u.. So the change of the-component of the momentum can be calculated by

Am= / 0 (Us — Uq) dX. (46)
Qp

Since the rate of momentum change is simply the force, the drag force can also be comp
by

Fo=—, 47
0= (47)

whereAt is the time step size in the computation.
(3) The integral form of thex-component of the momentum equations on any fluic
domain$2y can be described by

9
— puldx+/ puiu - nds
ot Ja, 9%

duy  ou;

= — n dx+/ <—+—)n-ds+ fy dx. 48
Qopl BQOM ox; | ax j o, 1 (48)

When the flow becomes steady, the above equation reduces to

au BIVE
/ puu-nds=— pnldx+/ M(—l + —')n,— ds+/ fidx. (49)
9% Q0 0% \0Xj  0Xp Q0

So the drag force can be calculated by

au au;
Fp = — fldx:—/ puu-nds— pnlds+/ u(1+')njds
Q0 %% 9% a0 \0Xj  0Xp

(50)

Therefore, we simply pick any square dom&ig enclosing the cylinder and compute the
line integrals of the above equation to obtain the drag force.

Lift coefficient. When the body starts shedding a vortex, a lift force on the body |
generated by the fluid. The dimensionless lift coefficient is defined by

FL

CL=———+—,
"7 (1/2)pu2,D

(51)

whereF_ is the lift force. As in the drag force calculation, the simplest way to measul
the lift force in the computation is the direct calculation of theomponent of the force
density. That s,

Lp
FL= —/ fde = — / deS, (52)
Q JO

where f; andF; are they-components of the force densitieandF, respectively.
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Strouhal number. When the steady flow becomes unstable and the body starts sh
ding vortices, the frequency with which the vortices are shed from the body can be m
dimensionless by the formula

St= -9—, (53)

where fq is the vortex shedding frequency. The new param8tés called the Strouhal
number. In our computation, it is easy to measure the dimensionless time Pghietiveen
vortices shedding. Thus, using the fact tligt= 1/ T, and the definition of dimensionless
time scale in Eq. (43)$tis measured by
St= 3 (54)
Tp

Computation details. We choose a large computational dom&ie= [0, 8] x [0, 8] and
a cylinder with diameteb = 0.30 whose center is located at (1.85, 4.0); thus, the cylinde
is very small compared 1@ (the size of the cylinder diameter versus the size of the doma
is about 1:27). The fluid density js= 1.0 and the far field velocity is, = 1.0. The fluid
viscosity is varied to achieve the desired Reynolds number in any particular computati
see Eg. (42). In [19], the authors use the preconditioned multigrid method to simulate
flow as a test problem for their schemes and also collect very detailed experimental
numerical results for comparison. As in [19], three different Reynolds nunfbees100,
150, 200 are considered and our numerical results are compared with the experime
results given there.

The computation starts with a random perturbation of the initial velocity in order to spe
up the transition to alternate vortex shedding and thereby save computing time. This in
perturbation affects only the onset time of the vortex shedding.

Table | provides the results for these two schemes with different parameters such asr
width h, time stepAt, and the stiffness constamnt Scheme 1 is the first-order method,
and Scheme 2 is the present, formal second-order method. The maximum displaceme
measured by the maximum norm of all boundary points deviated from their initial positio
divided by the radius of the cylinder. This is a measure of the relative motion of the cylinc
surface. The stiffnessis chosen so that the maximum displacement of any boundary po
is within 5%. Once the stiffness constants chosen, the time step is determined by the
stability constraintAt ~ C./h/x which is derived in [16]. The drag and lift coefficients are
time-averaged since the flow is unsteady. All calculations are up toTim40.

From Table I, we can see the Strouhal number is getting close to the experimental n
sured number as the mesh is refined. In the paper of Saiki and Biringen [28], the compi

TABLE |
The Values of the Different Quantities at Re= 100

Method h K At Cop C. St Max disp.

Scheme 1 1/64 8x10* 18x10° 15406 0.2829 0.133 3.06%
Scheme 2 1/64 8x10* 18x10° 15167 0.2904 0.155 4.54%
Scheme 1 1/128 .B8x10* 09x10° 14630 0.3290 0.144 1.51%
Scheme 2 1/128 B8x10* 09x10° 1.4473 0.3299 0.165 2.57%
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a First-order method b Formally second—order method
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FIG. 1. Three different measures §(& ; (2) — ; (3) --- ) of drag coefficients aRe= 150 for (a) first-order
method and (b) formally second-order method.

Strouhal numbers obtained from different researchers’ computations ranged from 0.
0.18 atRe=100. The Strouhal numbers computed by the formally second-order meth
have a good agreement with experimental measured data. As for the drag coefficients
present results are higher than the experimental and some previous computed data
However, in our numerical experiments, if we choose the computational domain larg
the drag coefficient becomes smaller. This is not surprising, since the boundary influe
becomes weaker when the domain is larger. Furthermore, as the mesh is refined, the
coefficient becomes smaller as well. Note that our immersed boundary approach has
advantage such that the drag and lift coefficients can be measured more easily than
methods.

Figure 1 shows the time evolution of the drag coefficients measured by three differ
methods forRe= 150. We can see that the three measures of computed drag coefficie
are almost the same for the formal second-order method but different for the first-or
method. This suggests that our new scheme is more accurate than the first-order me
despite the fact that the Dirac delta approximation will still result in some loss of accura
The time evolution of the lift coefficients is shown in Fig. 2.

Itis interesting to note in these figures that the oscillation frequency of the drag is twi
that of the lift (vortex shedding frequency). This is because the vortex sheds from upper

a First-order method ! b Formally second-order method

| Ty i
I I

. . . . . . . . L . L L .
40 60 80 100 120 140 160 180 40 60 80 100 120 140 160 180
Time Time

Lift coef.
o
Lift coef

FIG. 2. The lift coefficients aRe= 150 for (a) first-order method and (b) formally second-order method.
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TABLE Il
The Comparison of the Numerical and Experimental Strouhal Number

Re Scheme 1 Scheme 2 Williamson (Exp.) Roshko (Exp.)
100 0.144 0.165 0.166 0.164
150 0.156 0.184 0.183 0.182
200 0.163 0.190 0.197 0.190

lower surfaces alternately (thus, the lift changes sign alternately), but the upper and lo
vortex shedding makes almost the same contribution to the drag.

Table Il shows the comparison of the computed Strouhal number with experimental ¢
by Williamson and Roshko, as reported in [19]. We can see that the numerical results of
formally second-order method are in excellent agreement with the experimental data. Ir
numerical results of the first-order method, the Strouhal number (dimensionless freque
of vortex shedding) is about 20% too low. We attribute this to the numerical viscos
of the first-order method, which seems to be much reduced in the formally second-or
computation.

The instantaneous vorticity contours of vortex shedding computed at the final time
those methods are plotted in Fig. 3. We can see tr@#n vortex street of the flow around a
circular cylinder in these vorticity contour lines. The higher Strouhal number of the forma
second-order computation is evident in the closer spacing between the vortices in the Ic

1.5 2 2.5 3 3.5 4 4.5 5 55 6 6.5

FIG. 3. Vorticity contours of the flow around a cylinder Be=150. First-order method (top); formally
second-order method (bottom).
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part of the figure. Notice, too, that the vortices themselves are considerably more diff
in the first-order results (top) than in the formally second-order results (bottom). It see
likely that this is a consequence of the higher numerical viscosity of the first-order meth

5. CONCLUSION

In this paper, we have proposed a new, formally second-order accurate scheme fol
immersed boundary method, and we have tested this methodology by applying it to
problem of flow past a circular cylinder. This test problem was chosen because of the a
ability of experimental data over a substantial range of Reynolds number, with signific:
Reynolds number dependent effects that one would like a humerical method to replic
The previous, first-order accurate scheme of the immersed boundary method has also
tested for comparison.

The most significant differences between the old and the new scheme appear in con
tations where the flow is unsteady despite the steady boundary conditions, due to alter
vortex shedding from the upper and lower surfaces of the cylinder. Here the Strouhal nun
(dimensionless frequency of vortex shedding) is about 20% too low in the case of the fi
order scheme, but agrees very well with experiment in the case of the formally second-o|
scheme. In vorticity plots, the shed vortices look considerably more diffuse in the first-orc
results than in the formally second-order results. Another difference between these ¢
putations is that various measures of drag disagree with each other by as much as 20
the first-order results but are in excellent mutual agreement in the formally second-or
results.

Despite its lack of true second-order accuracy, the formally second-order scheme in
duced in this paper produces results that are closer to the available experimental data
the previous first-order scheme. This appears to be primarily because the new schem
less numerical viscosity than the old one. This is a considerable benefit; it helps us tc
able to simulate higher Reynolds number flow in immersed boundary problems.
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