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Abstract

In this paper, we extend our previous work (M.-C. Lai, A simple Com-
pact Fourth-Order Poisson Solver on Polar Geometry, J. Comput. Phys., 182,
337-345 (2002)) to three-dimensional cases. In particular, we present a spec-
tral/finite difference scheme for Poisson equation in cylindrical and spherical
coordinates. The scheme relies on the truncated Fourier series expansion,
where the partial differential equations of Fourier coefficients are solved by
a formally fourth-order accurate compact difference discretization. Here the
formal fourth-order accuracy means that the scheme is exactly fourth-order
accurate while the poles are excluded and is third-order accurate otherwise.
Despite the degradation of one order of accuracy due to the presence of poles,
the scheme handles the poles naturally; thus, no pole condition is needed.
The resultant linear system is then solved by the Bi-CGSTAB method with
the preconditioner arising from the second-order discretization which shows
the scalability with the problem size.

Keywords: Poisson equation; cylindrical coordinates; spherical coordi-
nates; symmetry constraint; Fast Fourier Transform; Bi-CGSTAB method

1 Introduction

In many physical problems, one often needs to solve the Poisson equation on a
three-dimensional non-Cartesian domain, such as cylindrical or spherical domains.
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For example, the projection method in the simulation of incompressible flow in a
pipe requires solving the pressure Poisson equation. It is convenient to rewrite the
equation in those coordinates. The first problem that must be dealt with is the
coordinate singularities (or poles) caused by the transformation. It is important to
note that the occurrence of those singularities is due to the representation of the
governing equation in those coordinates and the solution itself is regular if the source
function and the boundary conditions are smooth.

For the past few years, the first author and his collaborators have developed a
class of FFT-based fast direct solvers for poisson equation on 2D [1] and 3D [2]
cylindrical and spherical domains. The methods have three major features, namely,
the coordinate singularities can be treated easily, the resulting linear equations can
be solved efficiently by existing available fast algorithms, and the different boundary
conditions can be handled without substantial differences. Besides, the method is
easy to implement. Despite those aforementioned advantages of our algorithm, the
numerical schemes in 3D domain [2] are only second-order accurate.

Recently, the first author has developed a simple compact fourth-order Poisson
solver on 2D polar geometry [3]. In fact, the scheme in [3] is formally fourth-order
meaning that it has fourth-order accuracy only for the problem excluding the polar
origin but degrades to third-order accuracy when the origin is included. Despite the
degradation of one order of accuracy due to the presence of pole, the scheme handles
the pole naturally; thus, no pole condition is needed. There are a few papers in the
literature that discuss fourth-order finite difference schemes for the Poisson equation
in 2D polar [6, 4, 5] and 3D cylindrical coordinates [6, 7]. However, those papers
need to derive some special equations at r = 0 (that is, pole condition). In this
article, we shall extend the methodology presented in [3] to the three-dimensional
cylindrical and also spherical geometries.

2 Poisson equation in 3D cylindrical coordinates

The Poisson equation in a finite circular cylinder Ω = {0 < r ≤ 1, 0 ≤ θ < 2π, 0 ≤
z ≤ 1} can be conveniently represented in cylindrical coordinates as

∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2

∂2u

∂θ2
+

∂2u

∂z2
= f(r, z, θ), (2.1)

u(r, 1, θ) = uT (r, θ), u(r, 0, θ) = uB(r, θ), u(1, z, θ) = uS(z, θ). (2.2)

Here, we restrict the Dirichlet boundary conditions on the top, bottom and the
sidewall boundaries.
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2.1 Fourier mode equations

Since the solution u is periodic in θ, we can approximate it by the truncated Fourier
series as

u(r, z, θ) =

N/2−1∑

n=−N/2

ûn(r, z) einθ, (2.3)

where ûn(r, z) is the complex Fourier coefficient given by

ûn(r, z) =
1

N

N−1∑

k=0

u(r, z, θk) e−inθk , (2.4)

and θk = 2kπ/N with N the number of grid points along a circle. The above trans-
formation between the physical space and Fourier space can be efficiently performed
by the Fast Fourier Transform (FFT) with O(N log2 N) arithmetic operations.

Substituting the expansions of (2.3) into Eq.(2.1), and equating the Fourier co-
efficients, we derive ûn(r, z) satisfying the PDE

∂2ûn

∂r2
+

1

r

∂ûn

∂r
+

∂2ûn

∂z2
− n2

r2
ûn = f̂n(r, z), 0 < r ≤ 1, 0 ≤ z ≤ 1. (2.5)

ûn(r, 0) = ûn
B(r), ûn(r, 1) = ûn

T (r), ûn(1, z) = ûn
S(z). (2.6)

Here, the nth Fourier coefficient of the right-hand side function f̂n(r, z) and the
boundary values ûn

S(z), ûn
T (r), ûn

B(r) are defined in a similar fashion as (2.4). In
the following subsection, we shall use the notations U(r, z) = ûn(r, z) and F (r, z) =
f̂n(r, z), respectively.

Using the truncated Fourier series expansion, the original 3D Poisson equation
(2.1) now becomes a set (N) of 2D Fourier mode equations (2.5). In fact, we only
need to solve half of Fourier modes, say n = 0, 1, . . . , N/2−1 since u is a real valued
function and we have u−n(r, z) = un(r, z). Furthermore, since those Fourier mode
equations are fully decoupled, they can be solved in parallel. After we solve those
Fourier mode equations and obtain the values of ûn(r, z), the solution u(r, z, θ) can
be obtained via the inverse FFT as (2.3). In [2], we have developed a second-order
finite difference scheme to solve the Fourier mode equation (2.5). In this paper, our
goal is to derive a formally fourth-order accurate compact scheme for the equation
(2.5).

2.2 Formally fourth-order compact difference discretization

In order to derive a fourth-order finite difference approximation to Eq.(2.5), obvi-
ously, the first and second derivatives, Ur , Urr and Uzz, must be approximated to
fourth-order accurately. To proceed, let us write down some difference formulas for
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the first and second derivatives with the truncation errors O(∆r4) and O(∆z4) as
follows.

Ur = δ1
rU − ∆r2

6
Urrr + O(∆r4), (2.7)

Urr = δ2
rU − ∆r2

12
Urrrr + O(∆r4), (2.8)

Uzz = δ2
zU − ∆z2

12
Uzzzz + O(∆z4). (2.9)

Here δ1
r , δ2

r and δ2
z are the centered difference operators for the first and second

derivatives, defined as

δ1
rUij =

Ui+1,j − Ui−1,j

2 ∆r
, δ2

rUij =
Ui+1,j − 2Ui,j + Ui−1,j

∆r2
, (2.10)

δ2
zUij =

Ui,j+1 − 2 Ui,j + Ui,j−1

∆z2
, (2.11)

where Uij are the discrete values defined at the grid points (ri, zj). As in [2], we
choose a shifted grid to avoid the polar singularity as

ri = (i− 1/2) ∆r, zj = j ∆z, (2.12)

for 1 ≤ i ≤ L + 1; 0 ≤ j ≤ M + 1, with ∆r = 2/(2L + 1) and ∆z = 1/(M + 1).
Notice that, unlike the traditional mesh [9], we do not put the grid points on the
polar axis directly, thus; no pole conditions are needed.

In order to have fourth-order approximations for Ur, Urr and Uzz, we need to ap-
proximate the higher order partial derivatives Urrr, Urrrr and Uzzzz in Eqs.(2.7), (2.8)
and (2.9) to be second-order accurate. In addition, those approximations should in-
volve at most the neighboring nine-point stencil to meet the compact requirement.
To accomplish this, we differentiate Eq.(2.5) with respect to r and z and obtain the
higher order partial derivatives of U as

Urrr = Fr − Urr

r
+

1 + n2

r2
Ur − 2n2

r3
U − Uzzr, (2.13)

Urrrr = Frr − Fr

r
+

3 + n2

r2
Urr − 3 + 5n2

r3
Ur +

8n2

r4
U +

Uzzr

r
− Uzzrr, (2.14)

Uzzzz = Fzz − Urrzz − Urzz

r
+

n2

r2
Uzz. (2.15)

Now the partial derivatives Urrr, Urrrr and Uzzzz are written in terms of lower order
partial derivatives which are no higher than second-order in r and z. Using the
standard centered difference approximations to those lower order partial derivatives
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Figure 1: A nine-point compact stencil.

in Eqs.(2.13)-(2.15) and substituting those approximations into the equations (2.7)-
(2.9) and (2.5), we obtain the following difference scheme

δ2
rUi,j − ∆r2

12
[δ2

rFi,j − 1

ri

δ1
rFi,j +

3 + n2

r2
i

δ2
rUi,j − 3 + 5n2

r3
i

δ1
rUi,j

+
8n2

r4
i

Ui,j +
1

ri

δ1
rδ

2
zUi,j − δ2

rδ
2
zUi,j] +

1

ri

δ1
rUi,j

−∆r2

6ri

[δ1
rFi,j − 1

ri

δ2
rUi,j +

1 + n2

r2
i

δ1
rUi,j − 2n2

r3
i

Ui,j − δ1
rδ

2
zUi,j]− n2

r2
i

Ui,j

+δ2
zUi,j − ∆z2

12
[δ2

zFi,j − δ2
zδ

2
rUi,j − 1

ri

δ2
zδ

1
rUi,j +

n2

r2
i

δ2
zUi,j] = Fi,j, (2.16)

for 1 ≤ i ≤ L, 1 ≤ j ≤ M . Note that, the scheme involves centered difference
approximations to first or second order partial derivatives in r and z so only a nine-
point compact stencil is used, see the Figure 1 for illustration. One can also see
that if the order terms of ∆r2 and ∆z2 are ignored in the equation (2.16), then the
scheme recovers to the usual second-order accurate scheme as in [2].

In order to close the linear system, the numerical boundary values U0,j, UL+1,j

and Ui,0, Ui,M+1 should be supplied. The numerical boundary value U0,j can be
given by U0,j = (−1)n U1,j due to the symmetry constraint of Fourier coefficients
(ûn(−∆r/2, zj) = (−1)nûn(∆r/2, zj)) [3]. And the other numerical boundary can be
easily obtained by the given Dirichlet boundary values UL+1,j = ûn

S(zj), Ui,0 = ûn
B(ri)
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and Ui,M+1 = ûn
T (ri).

2.3 Numerical results

In this subsection, we perform some numerical tests on the accuracy and efficiency
of our scheme. Since the matrix of the resultant linear system in (2.16) is nonsym-
metric, we use the BiConjugate Gradient Stabilized method (Bi-CGSTAB) [10] to
solve the linear systems. The stopping criterion of the convergence is based on the
relative residual which the tolerance ranges from 10−9 − 10−13 depending on the
different Fourier modes.

Table 1 shows the maximum relative errors for three different solutions of Poisson
equation in cylindrical coordinates. In all our tests, we use L mesh points in the
radial (r) and axial (z) directions, and 2L points in the azimuthal (θ) direction.

The rate of convergence is computed by the formula log2(
EL/2

EL
), where EL is the

maximum relative error with mesh resolution L.
From Table 1, we can see that the errors of the solutions show third-order con-

vergence for all examples in the case of solid cylinder (0 < r ≤ 1). The loss of
one order of accuracy seems to come from the discretization near the polar origin.
This can be seen from the following truncation error analysis. In the Fourier mode
equation (2.5), the Ur(= ∂ûn/∂r) term is divided by r. So the second-order approx-
imation of Urrr in (2.7) is divided by an O(∆r) term near the origin, which makes
the approximation of Urrr/r first-order accurate. This has the consequence that the
overall truncation error of the Ur/r term in the vicinity of the origin is O(∆r3) and
thus so is the Fourier mode equation (2.5). However, this loss of accuracy does not
appear when solving the problem on a cylinder that excludes the polar singularity
such as the case of 0 < a ≤ r ≤ 1. Let us explain why is the case next.

As in the solid cylinder case, we need to solve Eq.(2.5) with the Dirichlet bound-
ary condition at r = 1 and an additional boundary condition imposed at r = a.
Instead of setting a grid as in (2.12), we choose a regular grid in the radial direction
as

ri = a + i∆r, i = 0, 1, ..., L, L + 1, (2.17)

with the mesh width ∆r = (1 − a)/(L + 1). Now the second-order approximation
of Urrr in (2.7) is divided by an O(a + ∆r) term instead of an O(∆r) term, so the
truncation error of the Urrr/r term is still O(∆r2) which makes the discretization
error of Ur/r term is O(∆r4). Therefore, the overall truncation error of Eq.(2.5) is
O(∆r4). One can see in Table 1 that the fourth-order convergence indeed can be
achieved for all test examples for the case of 0.5 ≤ r ≤ 1.

In order to speed up the convergence of Bi-CGSTAB iteration, we have applied
different preconditioners which include Block Jacobi (BJ) [8], Incomplete LU fac-
torization (ILU) [8], and the Fast Direct Solver (FDS) arising from the second-order
discretization for the equation (2.5) which is developed in [2]. Here, we solve the
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0 < r ≤ 1 0.5 < r ≤ 1
L ‖EL‖∞ Rate ‖EL‖∞ Rate
u(r, z, θ) = er cos θ+r sin θ+z

8 7.8137E-05 1.5465E-07
16 9.8506E-06 2.99 1.0920E-08 3.82
32 1.2566E-06 2.97 7.3409E-10 3.90
64 1.5941E-07 2.98 4.7580E-11 3.95
u(r, z, θ) = r3(cos θ + sin θ)z(1− z)
8 9.1438E-04 8.8994E-07
16 1.0755E-04 3.09 6.4128E-08 3.80
32 1.3008E-05 3.05 4.3173E-09 3.89
64 1.5966E-06 3.03 2.8035E-10 3.95
u(r, z, θ) = cos(π(r2 cos2 θ + r sin θ)) sin(πz2)
8 7.4000E-03 7.5000E-03
16 3.3150E-04 4.48 1.7101E-05 8.78
32 4.0782E-05 3.02 1.2221E-06 3.81
64 5.0424E-06 3.02 8.1011E-08 3.92

Table 1: The maximum relative errors for different solutions to Poisson equation in
cylindrical coordinates.

difference equation (2.16) with the Fourier mode number n = 1. The tolerance for
the relative residual is chosen as 10−9.

Table 2 shows the number of iterations needed to be convergent for different
preconditioners applied to Bi-CGSTAB iteration. The column of ”Bi-CGSTAB” is
the one without any preconditioner which, as expected, has the largest number of
iterations. The preconditioners BJ and ILU both need double iterations when the
grid points are doubled. One can see that, the FDS preconditioner turns out to be
the most efficient one since it has the least number of iterations, and the iterations
are kept to be a constant when we double the grid points.

L Bi-CGSTAB BJ ILU FDS
8 25 16 6 7
16 52 34 9 7
32 97 65 19 7
64 182 134 38 7

Table 2: The performance comparison of different preconditioners for the cylindrical
case.
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3 Poisson equation in 3D spherical coordinates

In this section, we perform the similar derivation as the cylindrical case and develop
a spectral/finite difference scheme for Poisson equation in 3D spherical domain. The
Poisson equation with Dirichlet boundary in a spherical shell Ω = {R0 ≤ ρ ≤ 1, 0 ≤
φ ≤ π, 0 ≤ θ ≤ 2π} can be written in spherical coordinates as

∂2u

∂ρ2
+

2

ρ

∂u

∂ρ
+

1

ρ2

∂2u

∂φ2
+

cot φ

ρ2

∂u

∂φ
+

1

ρ2 sin2 φ

∂2u

∂θ2
= f(ρ, φ, θ), (3.18)

u(R0, φ, θ) = uI(φ, θ), u(1, φ, θ) = uS(φ, θ). (3.19)

Here, the boundary condition should be imposed on the inner (ρ = R0 > 0) and
outer (ρ = 1) surfaces of the sphere.

As the cylindrical case, the main difficulty for solving Eq.(3.18) is to treat the
coordinate singularities along the polar axis where north (φ = 0) and south (φ = π)
poles are located. Most of numerical approaches including finite difference and
spectral methods involve imposing additional pole conditions to capture the behavior
of the solution in the vicinity of the poles. In [1, 2], we have developed a series of
FFT-based second-order fast Poisson solver without pole conditions for 2D and 3D
spherical domains. In the following, we will develop a formally fourth-order compact
scheme for Eqs. (3.18)-(3.19). To the best of our knowledge, we have not seen any
related work in the literature.

3.1 Fourier mode equations

As in the cylindrical coordinate case, we approximate u by the truncated Fourier
series as

u(ρ, φ, θ) =

N/2−1∑

n=−N/2

ûn(ρ, φ) einθ, (3.20)

where ûn(ρ, φ) is the complex Fourier coefficient given by

ûn(ρ, φ) =
1

N

N−1∑

k=0

u(ρ, φ, θk) e−inθk , (3.21)

and θk = 2kπ/N and N is the number of grid points along a latitude circle. Once
again, the above transformation between the physical space and Fourier space can
be efficiently performed by the Fast Fourier Transform (FFT) with O(N log2 N)
arithmetic operations. The expansion for the function f can be written in the
similar fashion.
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Substituting those expansions into Eq.(3.18), and equating the Fourier coeffi-
cients, ûn(ρ, φ) then satisfies the PDE

∂2ûn

∂ρ2
+

2

ρ

∂ûn

∂ρ
+

1

ρ2

∂2ûn

∂φ2
+

cot φ

ρ2

∂ûn

∂φ
− n2

ρ2 sin2 φ
ûn = f̂n(ρ, φ), (3.22)

ûn(R0, φ) = ûn
I (φ), ûn(1, φ) = ûn

S(φ). (3.23)

Here, ûn
I (φ) and ûn

S(φ) are the nth Fourier coefficient of uI(φ, θ) and uS(φ, θ), re-
spectively. Next, we need to derive a formally fourth-order compact scheme for the
Fourier mode equations (3.22).

3.2 Formally fourth-order compact difference discretization

As in [2], we choose a grid in (ρ, φ) plane by

ρi = R0 + i ∆r, φj = (j − 1/2) ∆φ, (3.24)

for 0 ≤ i ≤ L + 1, 0 ≤ j ≤ M + 1 with ∆ρ = (1− R0)/(L + 1) and ∆φ = π/M . By
the choice of those mesh points, we avoid placing points directly at north (φ = 0)
and south (φ = π) poles. Again, let the discrete values be denoted by U(ρi, φj) ≈
ûn(ρi, φj), and F (ρi, φj) ≈ f̂n(ρi, φj).

Our goal is to derive a fourth-order finite difference approximation to Eq.(3.22).
Obviously, the first and second derivatives, Uρ, Uρρ, Uφ and Uφφ must be approx-
imated to fourth-order accurately. In order to have fourth-order approximations
for Uρ, Uρρ, Uφ and Uφφ, we need to approximate the higher order derivatives Uρρρ,
Uρρρρ, Uφφφ and Uφφφφ to be second-order accurate. We then reduce those higher
order partial derivatives to lower order by differentiating the equation (3.22) and
use the regular centered difference to approximate those lower order partial deriva-
tives. The derivation is very similar to the cylindrical case, so we omit the detail
here. After a tedious calculation, we obtain a finite difference scheme as follows.
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For 1 ≤ i ≤ L, 1 ≤ j ≤ M , we have

δ2
ρUi,j − ∆ρ2

12
[δ2

ρFi,j − 2

ρi

δ1
ρFi,j + (

8 + n2 csc2 φj

ρ2
i

)δ2
ρUi,j +

10n2 csc2 φj

ρ4
i

Ui,j

+(
−8− 6n2 csc2 φj

ρ3
i

)δ1
ρUi,j − 10

ρ4
i

δ2
φUi,j − 10 cot φj

ρ4
i

δ1
φUi,j +

6 cot φj

ρ3
i

δ1
ρδ

1
φUi,j

+
6

ρ3
i

δ1
ρδ

2
φUi,j − cot φj

ρ2
i

δ2
ρδ

1
φUi,j − 1

ρ2
i

δ2
ρδ

2
φUi,j] +

2

ρi

{δ1
ρUi,j − ∆r2

6
[δ1

ρFi,j

− 2

ρi

δ2
ρUi,j + (

2 + n2 csc2 φj

ρ2
i

)δ1
ρUi,j +

2 cot φj

ρ3
i

δ1
φUi,j +

2

ρ3
i

δ2
φUi,j − cot φj

ρ2
i

δ1
ρδ

1
φUi,j

− 1

ρ2
i

δ1
ρδ

2
φUi,j − 2n2 csc2 φj

ρ3
i

Ui,j]}+
1

ρ2
i

{δ2
φUi,j − ∆φ2

12
[ρ2

i δ
2
φFi,j − ρ2

i cot φjδ
1
φFi,j

+((3 + n2) csc2 φj − 1)δ2
φUi,j + (−3− 5n2) csc2 φj cot φjδ

1
φUi,j

+2n2 csc2 φj(4 csc2 φj − 3)Ui,j + 2ρi cot φjδ
1
φδ

1
ρUi,j + ρ2

i cot φjδ
1
φδ

2
ρUi,j

−2ρiδ
2
φδ

1
ρUi,j − ρ2

i δ
2
φδ

2
ρUi,j]}+

cot φj

ρ2
i

{δ1
φUi,j − ∆φ2

6
[−ρ2

i δ
1
φδ

2
ρUi,j − 2ρiδ

1
φδ

1
ρUi,j

+(1 + n2) csc2 φjδ
1
φUi,j − cot φjδ

2
φUi,j − 2n2 csc2 φj cot φjUi,j + ρ2

i δ
1
φFi,j]}

−n2 csc2 φj

ρ2
i

Ui,j = Fi,j. (3.25)

Note that, the scheme involves centered difference approximations to first or second
order partial derivatives in ρ and φ so only a nine-point compact stencil is used.
One can also see that if the order terms of ∆ρ2 and ∆φ2 are ignored in the equation
(3.25), then the scheme recovers to the usual second-order accurate scheme as in [2].

When j = 1 for Eq.(3.25), the numerical boundary value Ui,0 can be given by
Ui,0 = (−1)nUi,1. This is because the Fourier coefficient satisfies the symmetry
constraint ûn(ρi,−∆φ/2) = (−1)nûn(ρi, ∆φ/2) [2]. Similarly, another numerical
boundary value Ui,M+1 can also be obtained by Ui,M+1 = (−1)nUi,M for the same
reason. So the numerical boundary values in the φ direction are provided and no pole
condition is needed in our finite difference setting. The other numerical boundary
U0,j, UL+1,j are given by the boundary values ûn

I (φj), û
n
S(φj).

3.3 Numerical results

In this subsection, we perform similar numerical tests on the accuracy and efficiency
of our scheme for the spherical coordinates case. In all our tests, we use L mesh
points in the radial (ρ) and colatitude (φ) directions, and 2L points in the longitude
(θ) direction. The inner radius is chosen as R0 = 0.5. The difference equation (3.25)
is solved by the Bi-CGSTAB method for n = 0, 1, . . . L − 1 where the tolerance of
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stopping ranges from 10−9 − 10−13 depending on the different Fourier modes. Once
we obtain the Fourier coefficients, the numerical solution can be computed by the
inverse FFT as in (3.20). Table 3 shows the maximum errors of the method for
three different solutions of Poisson equation in a spherical shell. One can see that
the errors of the solutions show third-order convergence for all test examples. The
reason of losing one order of accuracy is exactly the same as the cylindrical case so
we omit the discussion here.

Table 4 shows the number of iterations needed for solving the difference equation
(3.25) of n = 1 by the Bi-CGSTAB method with different preconditioners. The
tolerance of stopping for the relative residual is chosen as 10−9. Generally speaking,
the performance of those preconditioners are almost the same as the cylindrical case.
It is interesting to see that the ILU preconditioner seems to have the less number
of iterations than the FDS when the number of grid points is small. However,
the ILU does increase the iterations as the grid points increasing while the FDS
preconditioner still keeps the number of iterations.

L ‖EL‖∞ Rate
u(ρ, φ, θ) = eρ sin φ cos θ+ρ sin φ sin θ+ρ cos φ

8 3.7000E-03
16 5.4095E-04 2.77
32 7.4825E-05 2.85
64 1.0067E-05 2.89
u(ρ, φ, θ) = ρ3(cos θ + sin θ) sin φ(1− ρ cos φ)
8 5.2000E-03
16 9.5143E-04 2.45
32 1.5249E-04 2.64
64 2.2549E-05 2.76
u(ρ, φ, θ) = cos(π(ρ2 cos2 θ sin2 φ + ρ sin θ sin φ)) sin(πρ2 cos2 φ)
8 5.3700E-02
16 7.1000E-03 2.92
32 8.3568E-04 3.09
64 9.7240E-05 3.10

Table 3: The maximum relative errors for different solutions to Poisson equation in
spherical coordinates.

4 Conclusion and acknowledgement

In this paper, we present a formally fourth-order compact difference scheme for 3D
Poisson equation in cylindrical and spherical coordinates. The solver relies on the
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L Bi-CGSTAB BJ ILU FDS
8 30 27 3 11
16 56 54 5 13
32 99 106 7 13
64 196 191 14 13

Table 4: The performance comparison of different preconditioners for the spherical
case.

truncated Fourier series expansion, where the partial differential equations of Fourier
coefficients are solved by a formal fourth-order compact difference discretizations
without pole conditions. The resultant linear system is then solved by the Bi-
CGSTAB method with different preconditioners. The numerical results confirm
the formal accuracy of our scheme. Meanwhile, the preconditioner arising from the
second-order fast direct solver shows the scalability of Bi-CGSTAB with the problem
size.

The authors are supported in part by the National Science council of Taiwan
under research grant NSC-93-2115-M-009-008.
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