歡迎到實變函數論的課程網頁(課號5391)/Fall 2011 Real Analysis(II)(Course code: 5391)

授課教師:許元春, SA250, sheu@math.nctu.edu.tw

授課時間:星期二上午8:00--9:50(AB),星期四上午8:00--8:50(A)

授課地點:科一館223(SA223)

課程網頁(Course website): http://jupiter.math.nctu.edu.tw/~sheu/5354.htm

上課用書(Textbook):  Real Analysis & Functional Analysis both by Elias M. Stein and Rami Shakarchi 2004,2011

助教(TA):張明淇(zuroc.am91g@nctu.edu.tw); 蔡明耀(blackjacky@yahoo.com.tw)

課外諮詢時間(Office Hours): 星期15:30--16:30地點SA250 。如有其他需求可以另外預約時間。

演習課(Recitation):時間:星期一上午8:00-9:50; 地點SA223

成績計算(Score)

1.本學期包含4 考試

2.考試 100分、作業10分(加分參考:演習課課堂表現各10分。)

3.本學期之作業繳交方式:習題公佈後之 次週二課程結束時繳交。



學期作業
繳交題號
繳交期限

Homework 1

Chapter V: Exercises 1

2012/3/13

Homework 2

Chapter V: Exercises 13,15,16,17,19

2012/4/10

Homework 3

Chapter VI: Exercises 1,2,3

2012/04/24

Homework 4

Chapter VI: Exercises 5*,8,9*,10,11*,13,14,15(Turn in those with *)

2012/05/01

Homework 5

Chapter 6: Exercises 19*,22,25*,26,27*

2012/5/8

Homework 6

Chapter I: Exercises 1*,2*,4,5,7,8,9*

2012/05/28

Homework 7

Chapter I: Exercises 12,13,16*,17,19*,20,25*,34*,35

2012/06/05

Homework 8

Chapter IV: Exercises 1,2,6,8,9,12,13

2012/*/*

Homework 9

Chapter *: Exercises *

2012/*/*

Homework 10

Chapter *: Exercises *

2012/*/*

Homework 11

Chapter *: Exercises *


Homework 12

Chapter *: Exercises *



最新公告


公告時間
公告內容
2012/3/20
第一次考試時間及考試範圍:(04/16/2012)星期一 8:00~9:50 ; Chapter V
考試地點:SA223
2012/04/26
第2次考試時間及考試範圍:(05/14/2012)星期一 8:00~9:50 ; Chapter VI
考試地點:SA223
2012/05/31
第3次考試時間及考試範圍:(06/18/2012)星期一 8:00~9:50 ; Chapter I and IV
考試地點:SA223
2012/*/*
第4次考試時間及考試範圍:(2012/*/*)星期 一: 8:00~10:00 ; Chapter *
考試地點:SA223
課程內容


Week
Topics
1 The Fourier transform on L^{2}
2 Constant coefficient partial differential equations
3 Harmonic functions
4 The boundary value problem and Dirichlet's principle
5 Abstract measure spaces
6 Integration on a measure space
7 Product measures and Fubini theorem
8 Integration formula for polar coordinates
9 Borel measures on $R$ and the Lebesgue-Stieltjes integral
10 Absolute continuity of measures
11 Ergodic theorems
12 L^{p} spaces
13 Banach spaces
14 The dual space of L^{p}
15 More about linear functional
16 The Baire category theorem
17 The uniform boundedness principle
18 The open mapping theorem
19 The closed graph theorem



最後一次更新日期:100/9/20