Introduction to Distance-Regular Graphs

Chih-wen Weng

Department of Applied Mathematics, National Chiao Tung University
Let $\Gamma = (X, R)$ denote a graph (not necessary distance-regular for this moment) with diameter D.
Let $\Gamma = (X, R)$ denote a graph (not necessary distance-regular for this moment) with diameter D.
For two vertices $x, y \in X$, a walk of length t from x to y is a sequence of vertices $x = u_0, u_1, \ldots, u_t = y$ such that $u_i u_{i+1} \in R$.
Let $A = A_1$ denote the adjacency matrix of Γ.

Lemma

A_{xy}^t is the number of walks of length t from x to y.
Number of walks

Let \(A = A_1 \) denote the adjacency matrix of \(\Gamma \).

Lemma

\(A_{xy}^t \) is the number of walks of length \(t \) from \(x \) to \(y \).

Proof.

\[
A_{xy}^t = \sum_{u_1, u_2, \ldots, u_{t-1} \in X} A_{xu_1} A_{u_1 u_2} \cdots A_{u_{t-2} u_{t-1}} A_{u_{t-1} y} \\
= \sum_{u_1, u_2, \ldots, u_{t-1} \in X} 1.
\]
Lemma

The minimal polynomial of A has degree at least $D + 1$, where D is the diameter of Γ.
Lemma

The minimal polynomial of A has degree at least $D + 1$, where D is the diameter of Γ.

Proof.

Suppose $g(A) = 0$ for some polynomial of degree $k \leq D$. Pick two vertices $x, y \in X$ with distance k. Then $g(A)_{xy} \neq 0$, a contradiction.
Find all graphs of diameter D whose adjacency matrices with minimal polynomials of degree $D + 1$.
Recall

From now on let \(\Gamma = (X, R) \) denote a distance-regular graph with diameter \(D \).
Recall

From now on let $\Gamma = (X, R)$ denote a distance-regular graph with diameter D. We have seen earlier that $A_i = f_i(A)$, $f_{D+1}(A) = A_{D+1} = 0$, and $f_i(x)$ is monic with degree i, where $f_0(x) := 1$, $f_1(x) := x$ and $f_i(x)$ is defined recursively using

$$xf_i(x) = b_{i-1}f_{i-1}(x) + a_if_i(x) + c_{i+1}f_{i+1}(x) \quad 2 \leq i \leq D.$$
Recall

From now on let $\Gamma = (X, R)$ denote a distance-regular graph with diameter D. We have seen earlier that $A_i = f_i(A)$, $f_{D+1}(A) = A_{D+1} = 0$, and $f_i(x)$ is monic with degree i, where $f_0(x) := 1$, $f_1(x) := x$ and $f_i(x)$ is defined recursively using

$$xf_i(x) = b_{i-1}f_{i-1}(x) + a_if_i(x) + c_{i+1}f_{i+1}(x) \quad 2 \leq i \leq D.$$

In particular, the adjacency matrix of a distance-regular graph of diameter D has minimal polynomial of degree $D+1$.
1. A is diagonalizable since it is symmetric.
1. A is diagonalizable since it is symmetric.

2. $k = b_0$ is an eigenvalue of A with eigenvector $j := (1, 1, \ldots, 1)^t$, i.e. $A j = k j$.
1. A is diagonalizable since it is symmetric.
2. \(k = b_0 \) is an eigenvalue of \(A \) with eigenvector \(j := (1, 1, \ldots, 1)^t \), i.e. \(A j = k j \).
3. \(A \) has \(D + 1 \) distinct eigenvalues \(\theta_0 = k, \theta_1, \ldots, \theta_D \) since its minimal polynomial has degree \(D + 1 \).
1. A is diagonalizable since it is symmetric.

2. $k = b_0$ is an eigenvalue of A with eigenvector $j := (1, 1, \ldots, 1)^t$, i.e. $A j = k j$.

3. A has $D + 1$ distinct eigenvalues $\theta_0 = k, \theta_1, \ldots, \theta_D$ since its minimal polynomial has degree $D + 1$.

4. Let V_0, V_1, \ldots, V_D be corresponding orthogonal eigenspaces.
1. A is diagonalizable since it is symmetric.

2. $k = b_0$ is an eigenvalue of A with eigenvector $j := (1, 1, \ldots, 1)^t$, i.e. $A j = k j$.

3. A has $D + 1$ distinct eigenvalues $\theta_0 = k, \theta_1, \ldots, \theta_D$ since its minimal polynomial has degree $D + 1$.

4. Let V_0, V_1, \ldots, V_D be corresponding orthogonal eigenspaces.

5. Let E_i be a matrix to present the projection of \mathbb{R}^X into V_i in standard basis. E_i are called the primitive idempotents of Γ.
1. A is diagonalizable since it is symmetric.

2. $k = b_0$ is an eigenvalue of A with eigenvector $j := (1, 1, \ldots, 1)^t$, i.e. $Aj = kj$.

3. A has $D + 1$ distinct eigenvalues $\theta_0 = k, \theta_1, \ldots, \theta_D$ since its minimal polynomial has degree $D + 1$.

4. Let V_0, V_1, \ldots, V_D be corresponding orthogonal eigenspaces.

5. Let E_i be a matrix to present the projection of \mathbb{R}^X into V_i in standard basis. E_i are called the primitive idempotents of Γ.

6. $E_i E_j = \delta_{ij} E_i$, where $\delta_{ij} = 1$ if $i = j$; $\delta_{ij} = 0$ else.
1. A is diagonalizable since it is symmetric.

2. $k = b_0$ is an eigenvalue of A with eigenvector
 $j := (1, 1, \ldots, 1)^t$, i.e. $Aj = kj$.

3. A has $D + 1$ distinct eigenvalues $\theta_0 = k, \theta_1, \ldots, \theta_D$ since its
 minimal polynomial has degree $D + 1$.

4. Let V_0, V_1, \ldots, V_D be corresponding orthogonal eigenspaces.

5. Let E_i be a matrix to present the projection of \mathbb{R}^X into V_i in
 standard basis. E_i are called the primitive idempotents of Γ.

6. $E_i E_j = \delta_{ij} E_i$, where $\delta_{ij} = 1$ if $i = j$; $\delta_{ij} = 0$ else.

7. $A E_j u = \theta_j E_j u$ for $u \in \mathbb{R}^x$.
1. A is diagonalizable since it is symmetric.

2. $k = b_0$ is an eigenvalue of A with eigenvector $\mathbf{j} := (1, 1, \ldots, 1)^t$, i.e. $A\mathbf{j} = k\mathbf{j}.$

3. A has $D+1$ distinct eigenvalues $\theta_0 = k, \theta_1, \ldots, \theta_D$ since its minimal polynomial has degree $D+1$.

4. Let V_0, V_1, \ldots, V_D be corresponding orthogonal eigenspaces.

5. Let E_i be a matrix to present the projection of \mathbb{R}^X into V_i in standard basis. E_i are called the primitive idempotents of Γ.

6. $E_i E_j = \delta_{ij} E_i$, where $\delta_{ij} = 1$ if $i = j$; $\delta_{ij} = 0$ else.

7. $A E_j u = \theta_j E_j u$ for $u \in \mathbb{R}^x$.

8. $A^i E_j u = \theta_j^i E_j u$ for $u \in \mathbb{R}^x$.
Eigenvalues of distance-regular graphs

1. A is diagonalizable since it is symmetric.
2. $k = b_0$ is an eigenvalue of A with eigenvector $\mathbf{j} := (1, 1, \ldots, 1)^t$, i.e. $A\mathbf{j} = k\mathbf{j}$.
3. A has $D + 1$ distinct eigenvalues $\theta_0 = k, \theta_1, \ldots, \theta_D$ since its minimal polynomial has degree $D + 1$.
4. Let V_0, V_1, \ldots, V_D be corresponding orthogonal eigenspaces.
5. Let E_i be a matrix to present the projection of \mathbb{R}^X into V_i in standard basis. E_i are called the primitive idempotents of Γ.
6. $E_i E_j = \delta_{ij} E_i$, where $\delta_{ij} = 1$ if $i = j$; $\delta_{ij} = 0$ else.
7. $A E_j u = \theta_j E_j u$ for $u \in \mathbb{R}^X$.
8. $A^i E_j u = \theta_j^i E_j u$ for $u \in \mathbb{R}^X$.
9. $A_i E_j u = f_i(A) E_j u = f_i(\theta_j) E_j u$ for $u \in \mathbb{R}^X$.

Invertible Vandermonde matrix

In previous page we show

\[A^i E_j u = \theta^i_j E_j u \quad \text{for} \quad u \in \mathbb{R}^x. \]
Invertible Vandermonde matrix

In previous page we show

\[A^i E_j u = \theta_j^i E_j u \quad \text{for} \quad u \in \mathbb{R}^x. \]

Then

\[
\begin{pmatrix}
I \\
A \\
A^2 \\
\vdots \\
A^D
\end{pmatrix}
=
\begin{pmatrix}
1 & 1 & 1 & \cdots & 1 \\
\theta_0 & \theta_1 & \theta_2 & \cdots & \theta_D \\
\theta_0^2 & \theta_1^2 & \theta_2^2 & \cdots & \theta_D^2 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\theta_0^D & \theta_1^D & \theta_2^D & \cdots & \theta_D^D
\end{pmatrix}
\begin{pmatrix}
E_0 \\
E_1 \\
E_2 \\
\vdots \\
E_D
\end{pmatrix}
\]
Invertible Vandermonde matrix

In previous page we show

\[A^i E_j u = \theta_j^i E_j u \quad \text{for} \quad u \in \mathbb{R}^x. \]

Then

\[
\begin{pmatrix}
I \\
A \\
A^2 \\
\vdots \\
A^D
\end{pmatrix}
=
\begin{pmatrix}
1 & 1 & 1 & \cdots & 1 \\
\theta_0 & \theta_1 & \theta_2 & \cdots & \theta_D \\
\theta_0^2 & \theta_1^2 & \theta_2^2 & \cdots & \theta_D^2 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\theta_0^D & \theta_1^D & \theta_2^D & \cdots & \theta_D^D
\end{pmatrix}
\begin{pmatrix}
E_0 \\
E_1 \\
E_2 \\
\vdots \\
E_D
\end{pmatrix}
\]

In particular \(E_i \in M = \langle A \rangle \) and is symmetric.
Bose Mesner algebra

\[M := \langle A \rangle \]
\[M := \langle A \rangle = \text{Span}\{I, A, A^2, \ldots, A^D\} \]
Bose Mesner algebra

\[M := \langle A \rangle = \text{Span}\{I, A, A^2, \ldots, A^D\} = \text{Span}\{f_0(A), f_1(A), f_2(A), \ldots, f_D(A)\} \]
Bose Mesner algebra

\[M := \langle A \rangle = \text{Span}\{I, A, A^2, \ldots, A^D}\]
\[= \text{Span}\{f_0(A), f_1(A), f_2(A), \ldots, f_D(A)\} \]
\[= \text{Span}\{A_0, A_1, A_2, \ldots, A_D\} \]
$M := \langle A \rangle$

$= \text{Span}\{I, A, A^2, \ldots, A^D\}$

$= \text{Span}\{f_0(A), f_1(A), f_2(A), \ldots, f_D(A)\}$

$= \text{Span}\{A_0, A_1, A_2, \ldots, A_D\}$

$= \text{Span}\{E_0, E_1, E_2, \ldots, E_D\}$.
The eigenmatrices P and Q

Define the matrices P and Q to satisfy

\[
\begin{pmatrix}
A_0 \\
A_1 \\
\vdots \\
A_D \\
\end{pmatrix}
=
\begin{pmatrix}
E_0 \\
E_1 \\
\vdots \\
E_D \\
\end{pmatrix}
=
|X|^{-1}Q
\begin{pmatrix}
A_0 \\
A_1 \\
\vdots \\
A_D \\
\end{pmatrix}.
\]
The polynomials

\[\mathcal{K}_k(x; n, q) := \sum_{i=0}^{k} \binom{x}{i} \binom{n-x}{k-i} (-1)^i (q - 1)^{k-i} \]

are called the Krawtchouk polynomials.
The Hamming graph $H(D, 2)$

It turns out the Hamming graph $H(D, 2)$ has entries

$$P_{ij} = Q_{ij} = (K_i(j; D, 2))_{ij}$$

of the eigenmatrices P and Q for $0 \leq i, j \leq D$.
For a subset $Y \subseteq X$ and $0 \leq i \leq D$, define

$$d_i(Y) = \frac{1}{|Y|} \sum_{y \in Y} |\Gamma_i(y) \cap Y| = \frac{Y^t A_i Y}{|Y|},$$

where Y is the characteristic vector of Y.
Distribution vectors

For a subset $Y \subseteq X$ and $0 \leq i \leq D$, define

$$d_i(Y) = \frac{1}{|Y|} \sum_{y \in Y} |\Gamma_i(y) \cap Y| = \frac{Y^t A_i Y}{|Y|},$$

where Y is the characteristic vector of Y. The column vector

$$d(Y) = (d_0(Y), d_1(Y), \ldots, d_D(Y))^t$$

is called the distribution vector of Y.

1 $d_i(Y)$ is the average number of elements in Y with distance i to a vertex in Y.
1. $d_i(Y)$ is the average number of elements in Y with distance i to a vertex in Y.

2. $d_0(Y) + d_1(Y) + \cdots + d_D(Y) = |Y|$.

Remarks on distribution vectors

1. $d_i(Y)$ is the average number of elements in Y with distance i to a vertex in Y.

2. $d_0(Y) + d_1(Y) + \cdots + d_D(Y) = |Y|$.

3. The minimum distance of Y is $\min\{i \mid 1 \leq i \leq D, d_i(Y) \neq 0\}$.
1. \(d_i(Y) \) is the average number of elements in \(Y \) with distance \(i \) to a vertex in \(Y \).

2. \(d_0(Y) + d_1(Y) + \cdots + d_D(Y) = |Y| \).

3. The minimum distance of \(Y \) is \(\min\{i \mid 1 \leq i \leq D, d_i(Y) \neq 0\} \).

4. The study \(\mathbf{d}(Y) \) is important in coding theory. For example in \(H(D, 2) \), MacWilliams identity in coding theory is a description of \(\mathbf{d}(Y) \) and \(\mathbf{d}(Y^\perp) \), where \(Y \subseteq X = F_2^D \) is a subspace of \(F_2^D \) and \(Y^\perp \) consists of vectors orthogonal to each vector of \(Y \).
Theorem

(Delsarte’s thesis) For any $Y \subseteq X$,

$$Q_d(Y) \geq 0.$$
Theorem

(Delsarte’s thesis) For any \(Y \subseteq X \),

\[Q_d(Y) \geq 0. \]

Proof.

\[(Q_d(Y))_i = \sum_{j=0}^{D} Q_{ij} d_j(Y) \]
Theorem

(Delsarte’s thesis) For any $Y \subseteq X$,

$$Q_d(Y) \geq 0.$$

Proof.

$$\left(Q_d(Y)\right)_i = \sum_{j=0}^{D} Q_{ij} d_j(Y) = \sum_{j=0}^{D} Q_{ij} \frac{Y^t A_j Y}{|Y|}$$
Theorem

(Delsarte’s thesis) For any $Y \subseteq X$,

$$Q_d(Y) \geq 0.$$

Proof.

$$\begin{align*}
(Q_d(Y))_i &= \sum_{j=0}^{D} Q_{ij}d_j(Y) = \sum_{j=0}^{D} Q_{ij} \frac{Y^t A_j Y}{|Y|} \\
&= Y^t \left(\sum_{j=0}^{D} Q_{ij} \frac{A_j}{|Y|} \right) Y
\end{align*}$$
Theorem

(Delsarte’s thesis) For any $Y \subseteq X$,

$$Q_d(Y) \geq 0.$$

Proof.

$$\left(Q_d(Y)\right)_i = \sum_{j=0}^{D} Q_{ij} d_j(Y) = \sum_{j=0}^{D} Q_{ij} \frac{Y^t A_j Y}{|Y|}$$

$$= Y^t \left(\sum_{j=0}^{D} Q_{ij} \frac{A_j}{|Y|} \right) Y$$

$$= \frac{|X|}{|Y|} Y^t E_i Y$$
Linear programming bound

Theorem

(Delsarte’s thesis) For any \(Y \subseteq X \),

\[
Q_d(Y) \geq 0.
\]

Proof.

\[
(Q_d(Y))_i = \sum_{j=0}^{D} Q_{ij} d_j(Y) = \sum_{j=0}^{D} Q_{ij} \frac{\mathbf{Y}^t A_j \mathbf{Y}}{|Y|}
\]

\[
= \mathbf{Y}^t \left(\sum_{j=0}^{D} Q_{ij} \frac{A_j}{|Y|} \right) \mathbf{Y}
\]

\[
= \frac{|X|}{|Y|} \mathbf{Y}^t E_i \mathbf{Y} = (E_i \mathbf{Y})^t E_i \mathbf{Y}
\]
Theorem

(Delsarte’s thesis) For any $Y \subseteq X$,

$$Q_d(Y) \geq 0.$$

Proof.

\[
(Q_d(Y))_i = \sum_{j=0}^{D} Q_{ij}d_j(Y) = \sum_{j=0}^{D} Q_{ij} \frac{Y^t A_j Y}{|Y|}
\]

\[
= Y^t (\sum_{j=0}^{D} Q_{ij} \frac{A_j}{|Y|}) Y
\]

\[
= \frac{|X|}{|Y|} Y^t E_i Y = (E_i Y)^t E_i Y \geq 0.
\]
Suppose $Y \subseteq X$ with minimum distance k.
Suppose $Y \subseteq X$ with minimum distance k. Then

$$|Y| = 1 + d_k(Y) + d_{k+1}(Y) + \cdots + d_D(Y).$$
Suppose $Y \subseteq X$ with minimum distance k. Then

$$|Y| = 1 + d_k(Y) + d_{k+1}(Y) + \cdots + d_D(Y).$$

Problem Maximize

$$1 + d_k + d_{k+1} + d_{k+2} + \cdots + d_D,$$

with variables d_i subject to $d_i \geq 0$ for all i, $d_k > 0$, and $Qd \geq 0$.
Suppose $Y \subseteq X$ with minimum distance k. Then $|Y| = 1 + d_k(Y) + d_{k+1}(Y) + \cdots + d_D(Y)$.

Problem Maximize

$$1 + d_k + d_{k+1} + d_{k+2} + \cdots + d_D,$$

with variables d_i subject to $d_i \geq 0$ for all i, $d_k > 0$, and $Qd \geq 0$.

The answer of the above problem is an upper bound of the size of all $Y \subseteq X$ with minimum distance k.
Application of Delsarte’s linear programming bound

We raised the question to define a design in a distance-regular graph.
We raised the question to define a design in a distance-regular graph.

For $T \subseteq \{1, \ldots, D\}$, $Y \subseteq X$ is a T-design if $(Qd(Y))_i = 0$ for all $i \in T$.
We raised the question to define a design in a distance-regular graph.

For $T \subseteq \{1, \ldots, D\}$, $Y \subseteq X$ is a T-design if $(Qd(Y))_i = 0$ for all $i \in T$.

Theorem (Delsarte's thesis) In $J(n, D)$ and $Y \subseteq X = \left(\begin{matrix} n \\ D \end{matrix}\right)$, Y is a $\{1, 2, \ldots, t\}$-design if and only if $(\bigcup_{y \in Y} y, Y)$ is a t-$(\big| \bigcup_{y \in Y} y \big|, D, \lambda)$ design for some λ.
We raised the question to define a design in a distance-regular graph.

For $T \subseteq \{1, \ldots, D\}$, $Y \subseteq X$ is a T-design if $(Qd(Y))_i = 0$ for all $i \in T$.

Theorem (Delsarte’s thesis) In $J(n, D)$ and $Y \subseteq X = \binom{[n]}{D}$, Y is a $\{1, 2, \ldots, t\}$-design if and only if $(\bigcup_{y \in Y} y, Y)$ is a t-$(|\bigcup_{y \in Y} y|, D, \lambda)$ design for some λ.

Proof. Skip.