Root systems and Coxeter groups

Coxeter groups I

Hau-wen Huang

Department of Applied Mathematics, National Chiao Tung University, Taiwan

August 13, 2009
Content

- Root systems and Coxeter groups
 - NCTS
 - Coxeter groups
 - Length function
 - Geometric representation of W
 - Geometric interpretation of the length function

- Coxeter groups
Content

Root systems and Coxeter groups

NCTS

Coxeter groups

Length function

Geometric representation of \(W \)

Geometric interpretation of the length function

- Coxeter groups
- Length function
Content

- Coxeter groups
- Length function
- Geometric representation of W
Content

- Coxeter groups
- Length function
- Geometric representation of \(W \)
- Geometric interpretation of the length function
Content

- Coxeter groups
- Length function
- Geometric representation of W
- Geometric interpretation of the length function
- Radical of the bilinear form
Content

- Coxeter groups
- Length function
- Geometric representation of W
- Geometric interpretation of the length function
- Radical of the bilinear form
- Dual representation
Content

- Coxeter groups
- Length function
- Geometric representation of W
- Geometric interpretation of the length function
- Radical of the bilinear form
- Dual representation
- Finite Coxeter groups
References

Coxeter groups
We always assume that S is a finite set.
We always assume that S is a finite set. Let $m : S \times S \rightarrow \mathbb{N} \cup \{\infty\}$ be a function satisfied $m(s, s) = 1$, $m(s, s') = m(s', s) \geq 2$ for $s \neq s'$ in S.
We always assume that S is a finite set.
Let $m : S \times S \to \mathbb{N} \cup \{\infty\}$ be a function satisfied $m(s, s) = 1$, $m(s, s') = m(s', s) \geq 2$ for $s \neq s'$ in S. Let F denote the free group on the set S. Let N be the normal subgroup generated by all elements

$$(ss')^{m(s,s')}.$$
Coxeter groups

We always assume that S is a finite set. Let $m : S \times S \rightarrow \mathbb{N} \cup \{\infty\}$ be a function satisfied $m(s, s) = 1$, $m(s, s') = m(s', s) \geq 2$ for $s \neq s'$ in S. Let F denote the free group on the set S. Let N be the normal subgroup generated by all elements

$$(ss')^{m(s,s')}.$$

The group $W := F/N$ is called a Coxeter group, and the pair (W, S) is called a Coxeter system.
Let Γ be the undirected graph with vertex set S. Join vertices s and s' by an edge labelled $m(s, s')$ whenever the number is at least 3. Γ is call the \textbf{Coxeter graph} of (W, S).
Coxeter groups

Let Γ be the undirected graph with vertex set S. Join vertices s and s' by an edge labelled $m(s, s')$ whenever the number is at least 3. Γ is call the **Coxeter graph** of (W, S). We say a Coxeter system (W, S) is **irreducible** if its Coxeter graph Γ is connected.
Coxeter groups

Example: Let $S = \{s\}$. Then $N = \{\ldots, s^{-4}, s^{-2}, 1, s^2, s^4, \ldots\}$ and hence $W = \{N, sN\} \cong \{1, -1\}$.
Example: Let $S = \{s\}$. Then $N = \{\ldots, s^{-4}, s^{-2}, 1, s^2, s^4, \ldots\}$ and hence $W = \{N, sN\} \cong \{1, -1\}$.

\[
N \leadsto 1 \\
sN \leadsto s
\]
Coxeter groups

Example: Let $S = \{s\}$. Then $N = \{\ldots, s^{-4}, s^{-2}, 1, s^2, s^4, \ldots\}$ and hence $W = \{N, sN\} \cong \{1, -1\}$.

$$
N \leadsto 1
$$

$$
sN \leadsto s
$$

$$
W = \{1, s\}
$$
Question

For \(s \in S \), show that \(s \neq 1 \) in \(W \), in particular \(s \) has order 2 in \(W \).
Universal property:
Let G be a group and let ϕ be a map of S into G.

Universal property:

Let G be a group and let ϕ be a map of S into G. Then ϕ induces the homomorphism $\phi_* : W \to G$ satisfied $\phi_*(s) = \phi(s)$ for $s \in S$ if and only if

$$ (\phi(s)\phi(s'))^{m(s,s')} = 1 $$

for $s, s' \in S$.
By universal property, there is a homomorphism \(\epsilon : W \to \{1, -1\} \) satisfied \(\phi(s) = -1 \) for \(s \in S \).
By universal property, there is a homomorphism $\epsilon : W \rightarrow \{1, -1\}$ satisfied $\phi(s) = -1$ for $s \in S$.

Question

For $s \in S$, show that $s \neq 1$ in W, in particular s has order 2 in W.

Proof.
By universal property, there is a homomorphism $\epsilon : W \to \{1, -1\}$ satisfied $\phi(s) = -1$ for $s \in S$.

Question

For $s \in S$, show that $s \neq 1$ in W, in particular s has order 2 in W.

Proof. From the homomorphism ϵ, we have $s \neq 1$ in W. \[\Box\]
Length function
Length function

Since \(s \in S \) has order 2 in \(W \), each \(\omega \in W \) can be written in the form

\[
\omega = s_1 s_2 \cdots s_r
\]

for some \(s_i \) (not necessarily distinct) in \(S \).
Since \(s \in S \) has order 2 in \(W \), each \(\omega \in W \) can be written in the form
\[
\omega = s_1 s_2 \cdots s_r
\]
for some \(s_i \) (not necessarily distinct) in \(S \). If \(r \) is as small as possible, call it the \textbf{length} of \(\omega \), written \(\ell(\omega) \), and call any expression of \(\omega \) as a product of \(r \) elements of \(S \) a \textbf{reduced expression}.
Length function

Basic properties for $\ell(\omega)$:

$\ell(\omega) = \ell(\omega - 1)$.

$\ell(\omega) = 1$ if and only if $\omega \in S$.

$\ell(\omega' \omega) \leq \ell(\omega) + \ell(\omega')$.

$\ell(\omega' \omega) \geq \ell(\omega) - \ell(\omega')$.

$\ell(\omega) - 1 \leq \ell(\omega_s) \leq \ell(\omega) + 1$, for $s \in S$ and $\omega \in W$.
Length function

Basic properties for $\ell(\omega)$:

\blacktriangleright $\ell(\omega) = \ell(\omega^{-1})$.
Length function

Basic properties for $\ell(\omega)$:

- $\ell(\omega) = \ell(\omega^{-1})$.
- $\ell(\omega) = 1$ if and only if $\omega \in S$.
Length function

Basic properties for $\ell(\omega)$:

- $\ell(\omega) = \ell(\omega^{-1})$.
- $\ell(\omega) = 1$ if and only if $\omega \in S$.
- $\ell(\omega \omega') \leq \ell(\omega) + \ell(\omega')$.
Length function

Basic properties for $\ell(\omega)$:

- $\ell(\omega) = \ell(\omega^{-1})$.
- $\ell(\omega) = 1$ if and only if $\omega \in S$.
- $\ell(\omega \omega') \leq \ell(\omega) + \ell(\omega')$.
- $\ell(\omega \omega') \geq \ell(\omega) - \ell(\omega')$.
Length function

Basic properties for $\ell(\omega)$:

- $\ell(\omega) = \ell(\omega^{-1})$.
- $\ell(\omega) = 1$ if and only if $\omega \in S$.
- $\ell(\omega \omega') \leq \ell(\omega) + \ell(\omega')$.
- $\ell(\omega \omega') \geq \ell(\omega) - \ell(\omega')$.
- $\ell(\omega) - 1 \leq \ell(\omega s) \leq \ell(\omega) + 1$, for $s \in S$ and $\omega \in W$.
Length function

Proposition

The homomorphism $\epsilon : W \rightarrow \{1, -1\}$ is given by $\epsilon(\omega) = (-1)^{\ell(\omega)}$. As a result, $\ell(\omega s) = \ell(\omega) \pm 1$, for all $s \in S$, $\omega \in W$, and similarly for $\ell(s\omega)$.

Proof.
Proposition

The homomorphism $\epsilon : W \rightarrow \{1, -1\}$ is given by $\epsilon(\omega) = (-1)^{\ell(\omega)}$. As a result, $\ell(\omega s) = \ell(\omega) \pm 1$, for all $s \in S$, $\omega \in W$, and similarly for $\ell(s\omega)$.

Proof. Write a reduced expression $\omega = s_1 \cdots s_r$. Then

$$\epsilon(\omega) = \epsilon(s_1) \cdots \epsilon(s_r) = (-1)^r = (-1)^{\ell(\omega)},$$

as required.
Proposition

The homomorphism $\epsilon : W \to \{1, -1\}$ is given by $\epsilon(\omega) = (-1)^{\ell(\omega)}$. As a result, $\ell(\omega s) = \ell(\omega) \pm 1$, for all $s \in S$, $\omega \in W$, and similarly for $\ell(s \omega)$.

Proof. Write a reduced expression $\omega = s_1 \cdots s_r$. Then

$$\epsilon(\omega) = \epsilon(s_1) \cdots \epsilon(s_r) = (-1)^r = (-1)^{\ell(\omega)},$$

as required. Now $\epsilon(\omega s) = -\epsilon(\omega)$ implies that $\ell(\omega s) \neq \ell(\omega)$. Hence the length must differ by precisely 1. \qed
Geometric representation of W
Geometric representation of W

Question
For $s \neq s'$ in S, show that $s \neq s'$ in W.

Question
What is the order of ss' in W for $s \neq s'$ in S?
Geometric representation of W

Let V denote a vector space over \mathbb{R} having a basis $\{\alpha_s \mid s \in S\}$ of cardinality $|S|$. Define a symmetric bilinear form B on V by requiring:

$$B(\alpha_s, \alpha_{s'}) := -\cos \frac{\pi}{m(s, s')}.$$
Geometric representation of W

Basic properties for B:

- $B(\alpha_s, \alpha_s) = 1$
- $B(\alpha_s, \alpha_s') \leq 0$ if $s \neq s'$.
- The subspace H_s orthogonal to α_s relative to B is complementary to line R_{α_s} (Exercise).
- For $s \neq s'$ in S, the bilinear form B restricted on $R_{\alpha_s} \oplus R_{\alpha_s'}$ is positive definite if and only if $m(s, s') < \infty$.
Geometric representation of W

Basic properties for B:

$\Rightarrow B(\alpha_s, \alpha_s) = 1$
Geometric representation of W

Basic properties for B:

- $B(\alpha_s, \alpha_s) = 1$
- $B(\alpha_s, \alpha_{s'}) \leq 0$ if $s \neq s'$.
Geometric representation of W

Basic properties for B:

- $B(\alpha_s, \alpha_s) = 1$
- $B(\alpha_s, \alpha_{s'}) \leq 0$ if $s \neq s'$.
- The subspace H_s orthogonal to α_s (relative to B) is complementary to line $\mathbb{R}\alpha_s$ (Exercise).
Geometric representation of W

Basic properties for B:

- $B(\alpha_s, \alpha_s) = 1$
- $B(\alpha_s, \alpha_{s'}) \leq 0$ if $s \neq s'$.
- The subspace H_s orthogonal to α_s (relative to B) is complementary to line $\mathbb{R}\alpha_s$ (Exercise).
- For $s \neq s'$ in S, the bilinear form B restricted on $\mathbb{R}\alpha_s \oplus \mathbb{R}\alpha_{s'}$ is positive definite if and only if $m(s, s') < \infty$.
For each \(s \in S \), define a reflection \(\sigma_s : V \to V \) by the rule:

\[
\sigma_s \lambda := \lambda - 2B(\alpha_s, \lambda)\alpha_s.
\]

Basic properties for \(\sigma_s \):

\[\sigma_s \alpha_s = -\alpha_s \text{ and } \sigma_s \text{ fixes } H_s \text{ pointwise.}\]

\[\sigma_s \text{ has order 2 in } GL(V).\]

\[\sigma_s \neq \sigma_{s'} \text{ for } s \neq s' \text{ in } S.\]

\[B(\sigma_s \lambda, \sigma_s \mu) = B(\lambda, \mu) \text{ for all } \lambda, \mu \in V.\]
For each $s \in S$, define a reflection $\sigma_s : V \rightarrow V$ by the rule:

$$\sigma_s \lambda := \lambda - 2B(\alpha_s, \lambda)\alpha_s.$$

Basic properties for σ_s:

- $\sigma_s \alpha_s = -\alpha_s$ and σ_s fixes H_s pointwise.
Geometric representation of W

For each $s \in S$, define a reflection $\sigma_s : V \rightarrow V$ by the rule:

$$\sigma_s \lambda := \lambda - 2B(\alpha_s, \lambda)\alpha_s.$$

Basic properties for σ_s:

- $\sigma_s \alpha_s = -\alpha_s$ and σ_s fixes H_s pointwise.
- σ_s has order 2 in $GL(V)$.

Geometric representation of W

For each $s \in S$, define a reflection $\sigma_s : V \rightarrow V$ by the rule:

$$\sigma_s \lambda := \lambda - 2B(\alpha_s, \lambda)\alpha_s.$$

Basic properties for σ_s:

- $\sigma_s \alpha_s = -\alpha_s$ and σ_s fixes H_s pointwise.
- σ_s has order 2 in $\text{GL}(V)$.
- $\sigma_s \neq \sigma_{s'}$ for $s \neq s'$ in S.

For each $s \in S$, define a reflection $\sigma_s : V \to V$ by the rule:

$$\sigma_s \lambda := \lambda - 2B(\alpha_s, \lambda)\alpha_s.$$

Basic properties for σ_s:

- $\sigma_s \alpha_s = -\alpha_s$ and σ_s fixes H_s pointwise.
- σ_s has order 2 in $\text{GL}(V)$.
- $\sigma_s \neq \sigma_{s'}$ for $s \neq s'$ in S.
- $B(\sigma_s \lambda, \sigma_s \mu) = B(\lambda, \mu)$ for all $\lambda, \mu \in V$.
Our task is to show that there exists a homomorphism $\sigma : W \rightarrow GL(V)$, sending s to σ_s.
It is enough to check that

\[(\sigma_s \sigma_{s'})^{m(s,s')} = 1\]

for \(s \neq s'\). More precisely, we shall show that the order of \(\sigma_s \sigma_{s'}\) is \(m(s, s')\).
Geometric representation of W

Consider $\sigma_s \sigma_{s'}$ acts on $\mathbb{R}\alpha_s \oplus \mathbb{R}\alpha_{s'}$.
Consider \(\sigma_s \sigma_{s'} \) acts on \(R\alpha_s \oplus R\alpha_{s'} \).

Case I: \(m := m(s, s') < \infty \).
Consider $\sigma_s \sigma_{s'}$ acts on $R\alpha_s \oplus R\alpha_{s'}$.

Case I: $m := m(s, s') < \infty$. Here B is positive definite. Both σ_s and $\sigma_{s'}$ acts as reflections in euclidean plane.
Consider $\sigma_s \sigma_{s'}$ acts on $\mathbb{R}\alpha_s \oplus \mathbb{R}\alpha_{s'}$.

Case I: $m := m(s, s') < \infty$. Here B is positive definite. Both σ_s and $\sigma_{s'}$ acts as reflections in euclidean plane. Since $B(\alpha_s, \alpha_{s'}) = -\cos(\pi/m) = -\cos(\pi - (\pi/m))$, the angle between $\mathbb{R}\alpha_s$ and $\mathbb{R}\alpha_{s'}$ is $\pi - (\pi/m)$, forcing the angle between the two reflecting lines to be π/m.
Consider $\sigma_s \sigma_{s'}$ acts on $\mathbb{R}\alpha_s \oplus \mathbb{R}\alpha_{s'}$.

Case I: $m := m(s, s') < \infty$. Here B is positive definite. Both σ_s and $\sigma_{s'}$ acts as reflections in euclidean plane. Since $B(\alpha_s, \alpha_{s'}) = -\cos(\pi/m) = -\cos(\pi - (\pi/m))$, the angel between $\mathbb{R}\alpha_s$ and $\mathbb{R}\alpha_{s'}$ is $\pi - (\pi/m)$, forcing the angle between the two reflecting lines to be π/m. From our previous study, we recognize $\sigma_s \sigma_{s'}$ as a rotation through the angle $2\pi/m$; it therefore has order m.
Geometric representation of W

Case II: $m = \infty$. By induction, we can show that $(\sigma_s\sigma_{s'})^k(\alpha_s) = (2k + 1)\alpha_s + 2k\alpha_{s'}$. This implies that $\sigma_s\sigma_{s'}$ has infinite order.
Proposition

There is a unique homomorphism $\sigma : W \to \text{GL}(V)$ sending s to σ_s, and the group $\sigma(W)$ preserves the form B. Moreover, for each pair $s \neq s'$ in S, $s \neq s'$ in W and the order of ss' in W is precisely $m(s, s')$.

Root systems and Coxeter groups

NCTS

Coxeter groups

Length function

Geometric representation of W

Geometric interpretation of the length function
Geometric representation of W

Proposition

There is a unique homomorphism $\sigma : W \to \text{GL}(V)$ sending s to σ_s, and the group $\sigma(W)$ preserves the form B. Moreover, for each pair $s \neq s'$ in S, $s \neq s'$ in W and the order of ss' in W is precisely $m(s, s')$.

We refer to the homomorphism σ as the **geometric representation** of W.
Geometric interpretation of the length function
For $\lambda \in V$, we write $\omega(\lambda)$ in place of $\sigma(\omega)(\lambda)$.

\[\Phi := \{ \omega(\alpha_S) \mid \omega \in W, s \in S \}. \]

Φ is called the root system of W.

$\Phi = -\Phi$, since $s(\alpha_S) = -\alpha_S$.

$\omega(\alpha_S)$ is a unit vector, i.e. $B(\omega(\alpha_S), \omega(\alpha_S)) = 1$.

Geometric interpretation of the length function
For \(\lambda \in V \), we write \(\omega(\lambda) \) in place of \(\sigma(\omega)(\lambda) \).

Let \(\Phi := \{ \omega(\alpha_s) \mid \omega \in W, s \in S \} \). \(\Phi \) is called the root system of \(W \).
For $\lambda \in V$, we write $\omega(\lambda)$ in place of $\sigma(\omega)(\lambda)$.

Let $\Phi := \{\omega(\alpha_s) \mid \omega \in W, s \in S\}$. Φ is called the root system of W.

$\Rightarrow \Phi = -\Phi$, since $s(\alpha_s) = -\alpha_s$.
For $\lambda \in V$, we write $\omega(\lambda)$ in place of $\sigma(\omega)(\lambda)$.

Let $\Phi := \{\omega(\alpha_s) \mid \omega \in W, s \in S\}$. Φ is called the **root system** of W.

- $\Phi = -\Phi$, since $s(\alpha_s) = -\alpha_s$.
- $\omega(\alpha_s)$ is a unit vector, i.e. $B(\omega(\alpha_s), \omega(\alpha_s)) = 1$.

If $\alpha \in \Phi$, we can write it uniquely in the form

$$\alpha = \sum_{s \in S} c_s \alpha_s \ (c_s \in R).$$

Call $\alpha \in \Phi$ **positive** (resp. **negative**) and write $\alpha > 0$ (resp. $\alpha < 0$) if all $c_s \geq 0$ (resp. all $c_s \leq 0$). For example, $\alpha_s > 0$ for $s \in S$.

Geometric interpretation of the length function
Geometric interpretation of the length function

If $\alpha \in \Phi$, we can write it uniquely in the form

$$\alpha = \sum_{s \in S} c_s \alpha_s \ (c_s \in \mathbb{R}).$$

Call $\alpha \in \Phi$ **positive** (resp. **negative**) and write $\alpha > 0$ (resp. $\alpha < 0$) if all $c_s \geq 0$ (resp. all $c_s \leq 0$). For example, $\alpha_s > 0$ for $s \in S$.

Let $\Phi^+ := \{ \alpha \in \Phi \mid \alpha > 0 \}$ and $\Phi^- := \{ \alpha \in \Phi \mid \alpha < 0 \}$.
Geometric interpretation of the length function

Theorem

Let $\omega \in W$ and $s \in S$. If $\ell(\omega s) > \ell(\omega)$, then $\omega(\alpha_s) > 0$. If $\ell(\omega s) < \ell(\omega)$, then $\omega(\alpha_s) < 0$.

Proof. Omitted.
Theorem

Let $\omega \in W$ and $s \in S$. If $\ell(\omega s) > \ell(\omega)$, then $\omega(\alpha_s) > 0$. If $\ell(\omega s) < \ell(\omega)$, then $\omega(\alpha_s) < 0$.

Proof. Omitted.
Geometric interpretation of the length function

Corollary

\[\Phi = \Phi^+ \cup \Phi^- . \]
Corollary

\[\Phi = \Phi^+ \cup \Phi^- . \]

Corollary

The representation \(\sigma : W \rightarrow \text{GL}(V) \) is faithful.

Proof.
Geometric interpretation of the length function

Corollary

\[\Phi = \Phi^+ \cup \Phi^- . \]

Corollary

The representation \(\sigma : W \rightarrow \text{GL}(V) \) *is faithful.*

Proof. Let \(\omega \in \text{Ker} \sigma \). If \(\omega \neq 1 \), there exists \(s \in S \) for which \(\ell(\omega s) < \ell(\omega) \).
Geometric interpretation of the length function

Corollary

\[\Phi = \Phi^+ \cup \Phi^- . \]

Proof. Let \(\omega \in \text{Ker} \sigma \). If \(\omega \neq 1 \), there exists \(s \in S \) for which \(\ell(\omega s) < \ell(\omega) \). The above theorem says that \(\omega(\alpha_s) < 0 \). But \(\omega(\alpha_s) > 0 \), which is a contradiction.
The following is a precise description of the way in which W permutes Φ.

Proposition

For any $\omega \in W$, $\ell(\omega)$ equals the number of positive roots sent by ω to negative roots.

Sketch of Proof.
The following is a precise description of the way in which W permutes Φ.

Proposition

For any $\omega \in W$, $\ell(\omega)$ equals the number of positive roots sent by ω to negative roots.

Sketch of Proof. Let $n(\omega) := \text{Card}(\Phi^+ \cap \omega^{-1}(\Phi^-))$. Evidently, $n(1) = 0$.
The following is a precise description of the way in which W permutes Φ.

Proposition

For any $\omega \in W$, $\ell(\omega)$ equals the number of positive roots sent by ω to negative roots.

Sketch of Proof. Let $n(\omega) := \text{Card}(\Phi^+ \cap \omega^{-1}(\Phi^-))$. Evidently, $n(1) = 0$. From the above theorem, we see that it suffices to show that if $\omega(\alpha_s) > 0$ then $n(\omega s) = n(\omega) + 1$, and if $\omega(\alpha_s) < 0$ then $n(\omega s) = n(\omega) - 1$. \square
Geometric interpretation of the length function

The geometric characterization for the length function is useful.
Geometric interpretation of the length function

Exercise

If W is infinite, prove that the length function takes arbitrarily large values, hence that Φ is infinite. (Therefore the scalar $-1 \in \text{GL}(V)$ does not lie in $\sigma(W)$.) If W is finite, prove that there is one and only one element $\omega_0 \in W$ of maximum length, and that ω_0 maps Φ^+ onto Φ^-.

Proof.
Exercise

If W is infinite, prove that the length function takes arbitrarily large values, hence that Φ is infinite. (Therefore the scalar $-1 \in \text{GL}(V)$ does not lie in $\sigma(W)$.) If W is finite, prove that there is one and only one element $\omega_0 \in W$ of maximum length, and that ω_0 maps Φ^+ onto Φ^-.

Proof. If the length function ℓ has a large value k, then $|W| \leq \sum_{0 \leq i \leq k} |S|^i$ is finite. This shows the first assertion.
Exercise

If W is infinite, prove that the length function takes arbitrarily large values, hence that Φ is infinite. (Therefore the scalar $-1 \in \text{GL}(V)$ does not lie in $\sigma(W)$.) If W is finite, prove that there is one and only one element $\omega_0 \in W$ of maximum length, and that ω_0 maps Φ^+ onto Φ^-.

Proof. If the length function ℓ has a large value k, then $|W| \leq \sum_{0 \leq i \leq k} |S|^i$ is finite. This shows the first assertion. Suppose W is finite. Let $\omega_0 \in W$ be an element of maximum length. Evidently, $\ell(\omega_0 s) < \ell(\omega_0)$. By the above proposition, ω_0 maps Φ^+ onto Φ^-.
Exercise

If W is infinite, prove that the length function takes arbitrarily large values, hence that Φ is infinite. (Therefore the scalar $-1 \in \text{GL}(V)$ does not lie in $\sigma(W)$.) If W is finite, prove that there is one and only one element $\omega_0 \in W$ of maximum length, and that ω_0 maps Φ^+ onto Φ^-.

Proof. If the length function ℓ has a large value k, then $|W| \leq \sum_{0 \leq i \leq k} |S|^i$ is finite. This shows the first assertion. Suppose W is finite. Let $\omega_0 \in W$ be an element of maximum length. Evidently, $\ell(\omega_0 s) < \ell(\omega_0)$. By the above proposition, ω_0 maps Φ^+ onto Φ^-. Let $u \in W$ be another element of maximum length. Then $\omega_0 u^{-1}$ maps Φ^+ onto Φ^+. This implies that $\ell(\omega_0 u^{-1}) = 0$, i.e. $\omega_0 = u$. This shows the second assertion. □
Question: Suppose W is finite. How to find the unique longest element ω_0 in W.

Solution.
Question

Suppose W is finite. How to find the unique longest element ω_0 in W.

Solution. By the geometric characterization for the length function ℓ, we see ω_0 as the unique element in W satisfying $\ell(\omega s) < \ell(\omega)$ for all $s \in S$.
Geometric interpretation of the length function

Question
Suppose W is finite. How to find the unique longest element ω_0 in W.

Solution. By the geometric characterization for the length function ℓ, we see ω_0 as the unique element in W satisfying $\ell(\omega s) < \ell(\omega)$ for all $s \in S$. Start at $\omega = s_1$ where $s_1 \in S$. We can successively multiply ω on the right by $s \in S$ (increasing the length by 1) until this is no longer possible and ω_0 is obtained.
Thanks for your attention