Vertex-Transitive and Cayley Graphs

Mingyao Xu
Peking University

January 18, 2011
Graphs $\Gamma = (V(\Gamma), E(\Gamma))$.
DEFINITIONS

- Graphs $\Gamma = (V(\Gamma), E(\Gamma))$.
- Automorphisms
• Graphs $\Gamma = (V(\Gamma), E(\Gamma))$.

• Automorphisms

• Automorphism group $G = \text{Aut}(\Gamma)$.
DEFINITIONS

- Graphs $\Gamma = (V(\Gamma), E(\Gamma))$.
- Automorphisms
- Automorphism group $G = \text{Aut}(\Gamma)$.
- **Transitivity of graphs:** vertex-, edge-, arc-transitive graphs.
Definitions

- Graphs $\Gamma = (V(\Gamma), E(\Gamma))$.
- Automorphisms
- Automorphism group $G = \text{Aut}(\Gamma)$.
- Transitivity of graphs: vertex-, edge-, arc-transitive graphs.
- Cayley graphs: Let G be a finite group and S a subset of G not containing the identity element 1. Assume $S^{-1} = S$. We define the Cayley graph $\Gamma = \text{Cay}(G, S)$ on G with respect to S by

$$
\begin{align*}
V(\Gamma) &= G, \\
E(\Gamma) &= \{(g, sg) \mid g \in G, s \in S\}.
\end{align*}
$$
DEFINITIONS

- Graphs $\Gamma = (V(\Gamma), E(\Gamma))$.
- Automorphisms
- Automorphism group $G = \text{Aut}(\Gamma)$.
- Transitivity of graphs: vertex-, edge-, arc-transitive graphs.
- Cayley graphs: Let G be a finite group and S a subset of G not containing the identity element 1. Assume $S^{-1} = S$. We define the Cayley graph $\Gamma = \text{Cay}(G, S)$ on G with respect to S by

\[
\begin{align*}
V(\Gamma) &= G, \\
E(\Gamma) &= \{(g, sg) \mid g \in G, s \in S\}.
\end{align*}
\]
Cayley graphs

Let $\Gamma = \text{Cay}(G, S)$ be a Cayley graph on G with respect to S.

1. $\text{Aut}(\Gamma)$ contains the right regular representation $R(G)$ of G, so Γ is vertex-transitive.

2. Γ is connected if and only if $G = \langle S \rangle$.

A graph $\Gamma = (V, E)$ is a Cayley graph of a group G if and only if $\text{Aut}(\Gamma)$ contains a regular subgroup isomorphic to G.

Above Proposition \Rightarrow Cayley graphs are just those vertex-transitive graphs whose full automorphism groups have a regular subgroup.
Properties of Cayley graphs

- Let $\Gamma = \text{Cay}(G, S)$ be a Cayley graph on G with respect to S.
 1. $\text{Aut}(\Gamma)$ contains the right regular representation $R(G)$ of G, so Γ is vertex-transitive.
 2. Γ is connected if and only if $G = \langle S \rangle$.
Properties of Cayley graphs

- Let $\Gamma = \text{Cay}(G, S)$ be a Cayley graph on G with respect to S.
 1. $\text{Aut}(\Gamma)$ contains the right regular representation $R(G)$ of G, so Γ is vertex-transitive.
 2. Γ is connected if and only if $G = \langle S \rangle$.
- A graph $\Gamma = (V, E)$ is a Cayley graph of a group G if and only if $\text{Aut}(\Gamma)$ contains a regular subgroup isomorphic to G.

Above Proposition \implies Cayley graphs are just those vertex-transitive graphs whose full automorphism groups have a regular subgroup.
Properties of Cayley graphs

- Let $\Gamma = \text{Cay}(G, S)$ be a Cayley graph on G with respect to S.
 1. $\text{Aut}(\Gamma)$ contains the right regular representation $R(G)$ of G, so Γ is vertex-transitive.
 2. Γ is connected if and only if $G = \langle S \rangle$.

- A graph $\Gamma = (V, E)$ is a Cayley graph of a group G if and only if $\text{Aut}(\Gamma)$ contains a regular subgroup isomorphic to G.

Above Proposition \implies Cayley graphs are just those vertex-transitive graphs whose full automorphism groups have a regular subgroup.
Cayley graphs

The Petersen graph is not Cayley.

Outline of a proof:
If it is Cayley, then the group has order 10.
There are two non-isomorphic groups: cyclic and dihedral.
The girth of Cayley graphs on abelian groups are 3 or 4. So $G = D_{10}$.

$G = \langle a, b | a^5 = b^2 = 1, bab \rangle$.

$S = \{a, a^{-1}, b\}$ or three involutions.
For the former, since $abab$ is a cyclic of size 4, this is not the case.
For the latter, the product of any two involutions is 1 or of order 5, a contradiction.

Note: For a positive integer n, if every transitive group has a regular subgroup then every vertex-transitive graph is Cayley.
(Example: $n = p$, a prime.)
The Petersen graph is not Cayley

- **Outline of a proof:**
 If it is Cayley, then the group has order 10.
 There are two non-isomorphic groups: cyclic and dihedral.
 The girth of Cayley graphs on abelian groups are 3 or 4. So $G = D_{10}$.
 $G = \langle a, b \mid a^5 = b^2 = 1, bab = a^{-1} \rangle$.
 $S = \{a, a^{-1}, b\}$ or three involutions.
 For the former, since $abab$ is a cyclic of size 4, this is not the case.
 For the latter, the product of any two involutions is 1 or of order 5, a contradiction.
The Petersen graph is not Cayley

- **Outline of a proof:**
 - If it is Cayley, then the group has order 10.
 - There are two non-isomorphic groups: cyclic and dihedral.
 - The girth of Cayley graphs on abelian groups are 3 or 4. So $G = D_{10}$.
 - $G = \langle a, b \mid a^5 = b^2 = 1, bab = a^{-1} \rangle$.
 - $S = \{a, a^{-1}, b\}$ or three involutions.
 - For the former, since $abab$ is a cyclic of size 4, this is not the case.
 - For the latter, the product of any two involutions is 1 or of order 5, a contradiction.

- **Note:** For a positive integer n, if every transitive group has a regular subgroup then every vertex-transitive graph is Cayley. (Example: $n = p$, a prime.)
The Petersen graph is not Cayley

- **Outline of a proof:**
 - If it is Cayley, then the group has order 10.
 - There are two non-isomorphic groups: cyclic and dihedral.
 - The girth of Cayley graphs on abelian groups are 3 or 4. So $G = D_{10}$.

 $$G = \langle a, b \mid a^5 = b^2 = 1, bab = a^{-1} \rangle.$$

 - $S = \{a, a^{-1}, b\}$ or three involutions.

 - For the former, since $abab$ is a cyclic of size 4, this is not the case.
 - For the latter, the product of any two involutions is 1 or of order 5, a contradiction.

- **Note:** For a positive integer n, if every transitive group has a regular subgroup then every vertex-transitive graph is Cayley.
 (Example: $n = p$, a prime.)
A Question

Let \(NR = \{ n \in \mathbb{N} \mid \text{there is a transitive group of degree } n \text{ without a regular subgroup} \} \)

\(NC = \{ n \in \mathbb{N} \mid \text{there is a vertex-transitive graph of order } n \text{ which is non-Cayley} \} \)

Then \(NR \subseteq NC \).

Question: \(NR = NC \)?

Answer: \(NR \nsubseteq NC \). For example, 12 \(\not\in NC \), but 12 \(\in NR \) since \(M_{11} \), acting on 12 points, has no regular subgroup.

Exercise: 6 is the smallest number in \(NR \setminus NC \) since \(A_6 \) has no regular subgroups.
A Question

Let

\[\mathcal{NR} = \{ n \in \mathbb{N} \mid \text{there is a transitive group} \]
\[\text{of degree } n \text{ without a regular subgroup} \} \]

\[\mathcal{NC} = \{ n \in \mathbb{N} \mid \text{there is a vertex-transitive graph} \]
\[\text{of order } n \text{ which is non-Cayley} \} \]

Then \(\mathcal{NR} \supseteq \mathcal{NC} \).

- **Question:** \(\mathcal{NR} = \mathcal{NC} \)?.
A Question

Let

\[\mathcal{NR} = \{ n \in \mathbb{N} \mid \text{there is a transitive group of degree } n \text{ without a regular subgroup} \} \]

\[\mathcal{NC} = \{ n \in \mathbb{N} \mid \text{there is a vertex-transitive graph of order } n \text{ which is non-Cayley} \} \]

Then \(\mathcal{NR} \supseteq \mathcal{NC} \).

- Question: \(\mathcal{NR} = \mathcal{NC} \)?.

- Answer: \(\mathcal{NR} \supsetneq \mathcal{NC} \). For example, 12 \(\notin \mathcal{NC} \), but 12 \(\in \mathcal{NR} \) since \(M_{11} \), acting on 12 points, has no regular subgroup.
A Question

Let

\[\mathcal{NR} = \{ n \in \mathbb{N} \mid \text{there is a transitive group of degree } n \text{ without a regular subgroup} \} \]

\[\mathcal{NC} = \{ n \in \mathbb{N} \mid \text{there is a vertex-transitive graph of order } n \text{ which is non-Cayley} \} \]

Then \(\mathcal{NR} \supseteq \mathcal{NC} \).

- **Question:** \(\mathcal{NR} = \mathcal{NC} \)?
- **Answer:** \(\mathcal{NR} \supsetneq \mathcal{NC} \). For example, \(12 \notin \mathcal{NC} \), but \(12 \in \mathcal{NR} \) since \(M_{11} \), acting on 12 points, has no regular subgroup.
- **Exercise:** 6 is the smallest number in \(\mathcal{NR} \setminus \mathcal{NC} \) since \(A_6 \) has no regular subgroups.
A Question

Let

$$\mathcal{NR} = \{ n \in \mathbb{N} \mid \text{there is a transitive group of degree } n \text{ without a regular subgroup} \}$$

$$\mathcal{NC} = \{ n \in \mathbb{N} \mid \text{there is a vertex-transitive graph of order } n \text{ which is non-Cayley} \}$$

Then $$\mathcal{NR} \supseteq \mathcal{NC}$$.

- **Question:** $$\mathcal{NR} = \mathcal{NC}$$?
- **Answer:** $$\mathcal{NR} \supsetneq \mathcal{NC}$$. For example, $$12 \notin \mathcal{NC}$$, but $$12 \in \mathcal{NR}$$ since $$M_{11}$$, acting on 12 points, has no regular subgroup.
- **Exercise:** 6 is the smallest number in $$\mathcal{NR} \setminus \mathcal{NC}$$ since $$A_6$$ has no regular subgroups.
Any transitive group G of degree p^2 on Ω has a regular subgroup, i.e., $p^2 \in \mathbb{N}$. Outline of a proof: Take a minimal transitive subgroup P of G. Then P is a p-group and every maximal subgroup M of P is intranisitive. For any $\alpha \in \Omega$, we have $|P_\alpha| = |P|/p^2$ and $|M_\alpha| > |M|/p^2$, so $M_\alpha = P_\alpha$. It follows that $P_\alpha \leq M$ and hence $P_\alpha \leq \Phi(P)$. If $|P:\Phi(P)| = p$, then P is cyclic and is regular. If $|P:\Phi(P)| = p^2$, then $P_\alpha = \Phi(P)$. Since $\Phi(P)$ is normal in P and P_α is core-free, we have $P_\alpha = 1$ and hence $P \sim Z_2p$ is regular.
$p^2 \notin NC$

- (Marušičič) Any transitive group G of degree p^2 on Ω has a regular subgroup, i.e., $p^2 \notin NR$.

Outline of a proof: Take a minimal transitive subgroup P of G. Then P is a p-group and every maximal subgroup M of P is intranisitive. For any $\alpha \in \Omega$, we have $|P_\alpha| = |P|/p^2$ and $|M_\alpha| > |M|/p^2$, so $M_\alpha = P_\alpha$. It follows that $P_\alpha \leq M$ and hence $P_\alpha \leq \Phi(P)$. If $|P:\Phi(P)| = p$, then P is cyclic and is regular. If $|P:\Phi(P)| = p^2$, then $P_\alpha = \Phi(P)$. Since $\Phi(P)$ is normal in P and P_α is core-free, we have $P_\alpha = 1$ and hence $P \sim Z_{p^2}$ is regular.
A Question

\[p^2 \notin NC \]

- (Marušič ič) Any transitive group \(G \) of degree \(p^2 \) on \(\Omega \) has a regular subgroup, i.e., \(p^2 \notin NR \).

- Outline of a proof: Take a minimal transitive subgroup \(P \) of \(G \). Then \(P \) is a \(p \)-group and every maximal subgroup \(M \) of \(P \) is intran- sitive. For any \(\alpha \in \Omega \), we have \(|P_\alpha| = |P|/p^2 \) and \(|M_\alpha| > |M|/p^2 \), so \(M_\alpha = P_\alpha \). It follows that \(P_\alpha \leq M \) and hence \(P_\alpha \leq \Phi(P) \). If \(|P : \Phi(P)| = p \), then \(P \) is cyclic and is regular. If \(|P : \Phi(P)| = p^2 \), then \(P_\alpha = \Phi(P) \). Since \(\Phi(P) \) is normal in \(P \) and \(P_\alpha \) is core-free, we have \(P_\alpha = 1 \) and hence \(P \cong \mathbb{Z}_p^2 \) is regular.
\(p^2 \notin \mathcal{NC} \)

- (Marušič ič) Any transitive group \(G \) of degree \(p^2 \) on \(\Omega \) has a regular subgroup, i.e., \(p^2 \notin \mathcal{NR} \).

- Outline of a proof: Take a minimal transitive subgroup \(P \) of \(G \). Then \(P \) is a \(p \)-group and every maximal subgroup \(M \) of \(P \) is intransitive. For any \(\alpha \in \Omega \), we have \(|P_\alpha| = |P|/p^2 \) and \(|M_\alpha| > |M|/p^2 \), so \(M_\alpha = P_\alpha \). It follows that \(P_\alpha \leq M \) and hence \(P_\alpha \leq \Phi(P) \). If \(|P : \Phi(P)| = p \), then \(P \) is cyclic and is regular. If \(|P : \Phi(P)| = p^2 \), then \(P_\alpha = \Phi(P) \). Since \(\Phi(P) \) is normal in \(P \) and \(P_\alpha \) is core-free, we have \(P_\alpha = 1 \) and hence \(P \cong \mathbb{Z}_p^2 \) is regular.
A Question

Let G be the following group of order p^4:

$$G = \langle a, b \mid a^{p^2} = b^{p^3} = c^{p^4} = 1, [a, b] = c, [c, a] = a^{p^{2a}}, [c, b] = 1 \rangle.$$

Let $H = \langle c \rangle$. Consider the transitive permutation representation φ of G acting on the coset space $G : H$.

Then $\varphi(G)$ is a transitive group of degree p^3, and $\varphi(G)$ has no regular subgroups.
\(p^3 \in \mathcal{NR} \setminus \mathcal{NC} \)

- (Marušičič) \(p^3 \notin \mathcal{NC} \).
$p^3 \in \mathcal{NR} \setminus \mathcal{NC}$

- (Marušič ič) $p^3 \notin \mathcal{NC}$.
- $p^3 \in \mathcal{NR}$ (For $p > 2$).

Let G be the following group of order p^4

$$G = \langle a, b \mid a^{p^2} = b^p = c^p = 1, [a, b] = c, [c, a] = a^p, [c, b] = 1 \rangle.$$

Let $H = \langle c \rangle$. Consider the transitive permutation representation φ of G acting on the coset space $[G : H]$. Then $\varphi(G)$ is a transitive group of degree p^3, and $\varphi(G)$ has no regular subgroups.
A Question

\[p^3 \in \mathcal{NR} \setminus \mathcal{NC} \]

- (Marušič ič) \(p^3 \notin \mathcal{NC} \).
- \(p^3 \in \mathcal{NR} \) (For \(p > 2 \)).

Let \(G \) be the following group of order \(p^4 \)

\[
G = \langle a, b \mid a^{p^2} = b^p = c^p = 1, [a, b] = c, [c, a] = a^p, [c, b] = 1 \rangle.
\]

Let \(H = \langle c \rangle \). Consider the transitive permutation representation \(\varphi \) of \(G \) acting on the coset space \([G : H] \).

Then \(\varphi(G) \) is a transitive group of degree \(p^3 \), and \(\varphi(G) \) has no regular subgroups.
A Question

- \(p^3 \in \mathcal{N}\mathcal{R} \) (For \(p = 2 \)).

Let

\[
G = \langle a, b, c, d \mid a^2 = b^2 = c^2 = d^4 = 1, \\
[a, b] = [b, c] = [c, a] = 1, a^d = ab, b^d = bc, c^d = c \rangle.
\]

Then \(G \cong \mathbb{Z}_2^3 \rtimes \mathbb{Z}_4 \) has order \(2^5 \). Let \(H = \langle b, d^2 \rangle \) and \(\varphi \) be the transitive permutation representation of \(G \) acting on the coset space \([G : H] \).

Then \(\varphi(G) \) is a transitive group of degree \(2^3 \) and has no regular subgroup.
A Question

- $p^3 \in \mathcal{N}\mathcal{R}$ (For $p = 2$).
 Let

 \[G = \langle a, b, c, d \mid a^2 = b^2 = c^2 = d^4 = 1, \]
 \[[a, b] = [b, c] = [c, a] = 1, a^d = ab, b^d = bc, c^d = c \rangle. \]

 Then $G \cong \mathbb{Z}_2^3 \rtimes \mathbb{Z}_4$ has order 2^5. Let $H = \langle b, d^2 \rangle$ and φ be the transitive permutation representation of G acting on the coset space $[G : H]$.
 Then $\varphi(G)$ is a transitive group of degree 2^3 and has no regular subgroup.
Determine the set \mathcal{N}.
Let $p < q$ be two primes. Then $pq \in \mathcal{NR}$.
Let $p < q$ be two primes. Then $pq \in \mathcal{N}\mathcal{R}$.
Let $p < q$ be two primes. Then $pq \in \mathcal{N}\mathcal{R}$.

Theorem

Let n be a positive integer greater than 1. Then $n \in \mathcal{N}\mathcal{R}$ unless $n = p$ or p^2 for a prime p.
Let $p < q$ be two primes. Then $pq \in \mathcal{N}\mathcal{R}$.

Theorem

*Let n be a positive integer greater than 1. Then $n \in \mathcal{N}\mathcal{R}$ unless $n = p$ or p^2 for a prime p.***
Further Questions
Let \(\mathbb{N}_2 \mathbb{R} = \{ n \in \mathbb{N} \mid \text{there is a 2-closed transitive group of degree } n \text{ without a regular subgroup} \} \)

\(\mathbb{N}_D = \{ n \in \mathbb{N} \mid \text{there is a vertex-transitive digraph of order } n \text{ which is non-Cayley} \} \)

Question 1: Is \(\mathbb{N}_2 \mathbb{R} = \mathbb{N}_C \)?

Question 2: Is \(\mathbb{N}_D = \mathbb{N}_C \)?
Let

\[\mathcal{N}_2 \mathcal{R} = \{ n \in \mathbb{N} \mid \text{there is a 2-closed transitive group of degree } n \text{ without a regular subgroup} \} \]

\[\mathcal{N} \mathcal{D} = \{ n \in \mathbb{N} \mid \text{there is a vertex-transitive digraph of order } n \text{ which is non-Cayley} \} \]

Question 1: Is \(\mathcal{N}_2 \mathcal{R} = \mathcal{N} \mathcal{C} \)?
Further Questions

Let

\[N_2 \mathcal{R} = \{ n \in \mathbb{N} \mid \text{there is a 2-closed transitive group of degree } n \text{ without a regular subgroup} \} \]

\[N \mathcal{D} = \{ n \in \mathbb{N} \mid \text{there is a vertex-transitive digraph of order } n \text{ which is non-Cayley} \} \]

- Question 1: Is \(N_2 \mathcal{R} = N \mathcal{C} \)?
- Question 2: Is \(N \mathcal{D} = N \mathcal{C} \)?
Further Questions

Let

\[N_2 \mathcal{R} = \{ n \in \mathbb{N} \mid \text{there is a 2-closed transitive group of degree } n \text{ without a regular subgroup} \} \]
\[N \mathcal{D} = \{ n \in \mathbb{N} \mid \text{there is a vertex-transitive digraph of order } n \text{ which is non-Cayley} \} \]

- Question 1: Is \(N_2 \mathcal{R} = N \mathcal{C} \)?
- Question 2: Is \(N \mathcal{D} = N \mathcal{C} \)?
Further Questions

Let \(PNR = \{ n \in \mathbb{N} \mid \text{there is a primitive group of degree} \ n \ \text{without a regular subgroup} \} \).

Determine the set \(PNR \).

Note: Different from the set \(NR \), we know that \(p_n / \in PNR \) for any prime \(p \) and any positive integer \(n \). Thus, determining the set \(PNR \) should be much harder than \(NR \).
Let

\[\mathcal{PNR} = \{ n \in \mathbb{N} \mid \text{there is a primitive group of degree } n \text{ without a regular subgroup} \} \]

- Determine the set \(\mathcal{PNR} \).
Let

\[\mathcal{PNR} = \{ n \in \mathbb{N} \mid \text{there is a primitive group of degree } n \text{ without a regular subgroup} \} \]

- Determine the set \(\mathcal{PNR} \).
- Note: Different from the set \(\mathcal{NR} \), we know that \(p^n \notin \mathcal{PNR} \) for any prime \(p \) and any positive integer \(n \). Thus, determining the set \(\mathcal{PNR} \) should be much harder than \(\mathcal{NR} \).
Let

\[\mathcal{PNR} = \{ n \in \mathbb{N} \mid \text{there is a primitive group of degree } n \text{ without a regular subgroup} \} \]

- Determine the set \(\mathcal{PNR} \).
- Note: Different from the set \(\mathcal{NR} \), we know that \(p^n \notin \mathcal{PNR} \) for any prime \(p \) and any positive integer \(n \). Thus, determining the set \(\mathcal{PNR} \) should be much harder than \(\mathcal{NR} \).