2-Connected Graphs

Chih-wen Weng

September 22
2-connected graph

Recall G is 2-connected if $\kappa(G) \geq 2$. Equivalently G is connected and $G - x$ is connected for any vertex $x \in V$.

Definition 0.1. Let u, v be two vertices in V. Two u, v-paths are *internally disjoint* if they have no common internal vertex.
Lemma 0.2. Suppose for any two distinct vertices u, v there exist internally disjoint u, v-paths in G. Then G is 2-connected.

Proof. Of course G is connected. We shall show $G - x$ is connected for any $x \in V$. Pick two vertices u, v in $G - x$ and two internally disjoint u, v-paths. Then at least of the u, v-paths is in $G - x$. Hence $G - x$ is connected. \qed

Definition 0.3. For $u, v \in V(G)$, let $\partial(u, v)$ be the length of shortest u, v-path. $\partial(u, v)$ is called the distance of u, v.
Whitney Theorem [1932]

Theorem 0.4. Suppose \(G \) is 2-connected with at least three vertices. Then for any two distinct vertices \(u, v \) there exist internally disjoint \(u, v \) paths in \(G \).

Proof. We prove by induction on the distance \(\partial(u, v) \). First suppose \(\partial(u, v) = 1 \). Hence \(uv \) is an edge. We need to find another path in \(G - uv \). Recall that \(\kappa'(G) \geq \kappa(G) \geq 2 \). Hence \(G - uv \) is connected. Next suppose the theorem is true for \(\partial(u, v) \leq k \). \(\square \)
Continue of Proof

Proof. Now assume $\partial(u, v) = k + 1$. Pick a vertex w with $\partial(u, w) = 1$ and $\partial(w, v) = k$. By induction we can find two internally disjoint w, v-paths P, Q. Since $G - w$ is connected we can find a u, v-path R in $G - w$. Let z be the first vertex in R that meets P or Q, say P. Then the combine of u, z-path of R with the z, v-path of P is internally disjoint from $uw \cup Q$. \qed
Expanding Lemma

Lemma 0.5. Suppose G is 2-connected and G' is obtained from G by adding a new vertex y with at least 2 neighbors in G. Then G' is 2-connected.

Proof. Of course G' is connected. We need to show $G' - x$ is connected for any vertex x in G'. Pick two vertices u, v in $G' - x$. If u, v are in G then we can find a u, v-path in $G - x$ by the 2-connected property of G. So assume one of u, v is y, say $v = y$. Choose a neighbor w of y that is not x. Pick a u, w-path in $G - x$. Combine this u, w-path with wv to obtain a u, v-path in $G' - x$. □
Characterization

Theorem 0.6. Let G be a graph with at least three vertices. Then the following (i)-(iv) are equivalent.

(i) G is 2-connected.

(ii) For all vertices $u, v \in V$, there are internally disjoint u, v-paths.

(iii) For all vertices $u, v \in V$, there is a cycle through u and v.

(iv) $\delta(G) \geq 1$ and every pair of edges in G lies on a common cycle.
Proof

Proof. (iv)⇒(iii) Clear.

(iii)⇒(ii) Clear.

(ii)⇒(i) This Lemma 0.2.

(i)⇒(iv) Since G is connected with at least 2 vertices, every vertex has degree at least 1. Let uv and xy be two edges in G. Add to G new vertices w with neighborhood $\{u, v\}$ and z with neighborhood $\{x, y\}$. Since G is 2-connected, the Expansion Lemma implies the new graph G' is 2-connected. □
Continue of Proof

Proof. By Theorem 0.4, there are two internally disjoint \(w, z \)-paths \(P, Q \) in \(G' \). Note that \(u, v \) (resp. \(x, y \)) are in different paths since \(w \) (resp. \(z \)) has degree 2. Say \(u, x \in P \) and \(v, y \in Q \). Let \(C \) be the cycle combining the \(w, z \)-path \(P \) and the \(z, w \)-path of reversed \(Q \). Note that \(v, w, u \) and \(x, z, y \) are two paths of length 2 in \(C \). Replacing \(v, w, u \) and \(x, z, y \) by \(v, u \) and \(x, y \) respectively yields the desired cycle through \(vu \) and \(xy \).