圖的度數對之研究

學生：黃苓芸 指導教授：翁志文

國立交通大學
應用數學系

摘要

簡單圖 G 上一點 v 的平均二度數定義為與 v 相鄰之點的度數平均。度數列和平均二度數列在最大拉普拉斯特徵值上界的應用，已有許多研究成果。若 G 中所有點的平均二度數皆為 k，則 G 稱為擬 k 正則圖。在此論文中，我們證明若 G 爲擬 k 正則圖，則 k 是整數；進而找出所有擬正則樹。我們也考慮了當 G 的最大度數為 $k^2 - k$ 的情形，並給出一些基本的結果。最後，我們對於擬 3 正則圖給出了更多的結果。並且刻畫出所有十個點之內非正則的擬 3 正則圖。

關鍵字：圖，鄰接矩陣，拉普拉斯矩陣，度數，平均二度數，擬 k 正則。
The Degree Pairs of a Graph

Student: Ling-Yun Huang Advisor: Chih-Wen Weng

Department of Applied Mathematics
National Chiao Tung University

Abstract

Let \(v \) be a vertex in a simple graph \(G \). The \textit{average 2-degree} of \(v \) is the average of degrees of vertices adjacent to \(v \). The applications of the degree and average 2-degree sequences on the upper bounds for the maximum eigenvalue of Laplacian matrix of a graph is studied by many authors. The graph \(G \) is called \textit{pseudo} \(k \)-regular if each vertex in \(G \) has average 2-degree \(k \). We prove that if \(G \) is pseudo \(k \)-regular then \(k \) is integral. Moreover, all pseudo regular trees are given in this thesis. We also consider the case when the maximum degree of \(G \) is \(k^2 - k \), and give some basic results. In the end, we give more results of pseudo 3-regular graphs. And characterize all the pseudo 3-regular graph within ten vertices but not regular.

\textbf{Keywords}: Graph, adjacency matrix, Laplacian matrix, degree, average 2-degree, pseudo \(k \)-regular.
Table of Contents

Abstract (in Chinese) i

Abstract (in English) ii

Table of Contents iii

List of Figures iv

1 Introduction 1

2 Degree pairs 6

3 Pseudo k-regular graphs 10

Bibliography 28
List of Figures

1.1 Two graphs with different sequences of degree pairs (d_i, m_i) . . 4
1.2 Two graphs with the same sequence of degree pairs (d_i, m_i) . . 4

2.1 A graph with the given sequence A 7
2.2 A graph has girth at most 4 . 8

3.1 A graph with $m_i = 2$. 11
3.2 A graph with $m_i = 3$. 11
3.3 A graph with $m_i = 4$. 11
3.4 The tree T_2 . 12
3.5 The tree T_3 . 12
3.6 The graph U_3 with type A vertices 16
3.7 The graph M_3 . 16
3.8 The graphs in \mathcal{E}_3 . 17
3.9 Switching . 18
3.10 The graph $E_3 \in \mathcal{E}_3$. 18
3.11 The graphs in \mathcal{F}_3 . 19
3.12 The graph $F_3 \in \mathcal{F}_3$. 19
3.13 Graphs with $\Delta(G) = 5$. 20
3.14 Graphs has $\Delta(G) = 4$ with degree sequence $(3, 3, 3, 3)$. . . 21
3.15 The graph has $\Delta(G) = 4$ with degree sequence $(3, 3, 3, 3)$. . 22
3.16 Graphs has $\Delta(G) = 4$ with degree sequence $(4, 3, 3, 2)$ 22
3.17 The graph has $\Delta(G) = 4$ with degree sequence $(4, 3, 3, 2)$. . . 22
3.18 Graphs has $\Delta(G) = 4$ with degree sequence $(4, 4, 2, 2)$. . . 23
3.19 The graph has $\Delta(G) = 4$ with degree sequence $(4, 4, 2, 2)$. . . 23
3.20 Graphs with sequence $(n, a_4, a_3, a_2, a_1) = (7, 1, 4, 2, 0)$. . . 25
3.21 The graph with sequence $(n, a_4, a_3, a_2, a_1) = (8, 2, 2, 2, 2)$. 25
3.22 Graphs with sequence $(n, a_4, a_3, a_2, a_1) = (9, 3, 0, 6, 0)$. . 26
3.23 The graph with sequence $(n, a_4, a_3, a_2, a_1) = (9, 2, 3, 3, 1)$. . 26
3.24 Graphs with sequence $(n, a_4, a_3, a_2, a_1) = (9, 1, 6, 2, 0)$. . . 26
3.25 Graphs with sequence $(n, a_4, a_3, a_2, a_1) = (10, 2, 4, 4, 0)$. . 27
3.26 The graph with sequence $(n, a_4, a_3, a_2, a_1) = (10, 2, 4, 0, 4)$. 27
Chapter 1

Introduction

Let G be a graph with vertex set $V_G = \{1, 2, \ldots, n\}$ and edge set E_G. Let d_i be the degree of the vertex $i \in V_G$, defined as follows:

$$d_i := |G_1(i)|,$$

where $G_1(i)$ means the set $\{j \in V_G \mid ji \in E_G\}$ of neighbors of i.

Let \(m_i \) be the average 2-degree of the vertex \(i \in VG \), defined as follows.

\[
m_i := \frac{1}{d_i} \sum_{j \in EG} d_j.
\]

And the sequence \(\{m_i\}_{i \in VG} \) of \(G \) is called a \textbf{average 2-degree sequence} of \(G \). We shall give a survey of average 2-degree sequence of a graph.

Let \(G \) be a simple graph. The \textbf{adjacency matrix} of \(G \) is the 0-1 matrix \(A \) indexed by \(VG \) such that \(A_{xy} = 1 \) if and only if \(xy \in EG \). The \textbf{degree matrix} of \(G \) is the diagonal matrix \(D \) indexed by \(VG \) such that \(D_{xx} \) is the degree \(d_x \) of \(x \in VG \). The average 2-degree sequence appears often in the study of maximum eigenvalue \(\ell_1(G) \) of the \textbf{Laplacian matrix} \(L = D - A \) associated with \(G \), where \(D \) is the degree matrix and \(A \) is the adjacency matrix of \(G \). The following results are about the upper bounds of \(\ell_1(G) \):

1. In 1998, Merris gave the following bound [15]:

\[
\ell_1(G) \leq \max_{i \in VG} \{d_i + m_i\}.
\]

2. Also in 1998, Li and Zhang gave the following bound [14]:

\[
\ell_1(G) \leq \max_{ij \in EG} \left\{ \frac{d_i(d_i + m_i) + d_j(d_j + m_j)}{d_i + d_j} \right\}.
\]

3. In 2001, Li and Pan gave the following bound [13]:

\[
\ell_1(G) \leq \max_{i \in VG} \left\{ \sqrt{2d_i(d_i + m_i)} \right\}.
\]

4. In 2004, Das gave the following bound [4]:

\[
\ell_1(G) \leq \max_{ij \in EG} \left\{ \frac{d_i + d_j + \sqrt{(d_i - d_j)^2 + 4m_im_j}}{2} \right\}.
\]
5. Also in 2004, Zhang gave the following bounds [21]:

(a) \[
\ell_1(G) \leq \max_{ij \in E G} \left\{ 2 + \sqrt{d_i(d_i + m_i - 4)} + d_j(d_j + m_j - 4) + 4 \right\}.
\]

(b) \[
\ell_1(G) \leq \max_{i \in V G} \left\{ d_i + \sqrt{d_i m_i} \right\}.
\]

(c) \[
\ell_1(G) \leq \max_{ij \in E G} \left\{ \sqrt{d_i(d_i + m_i)} + d_j(d_j + m_j) \right\}.
\]

As everyone knows, a graph \(G \) is \textbf{k-regular} if \(d_i = k \) for all vertices \(i \in V G \). If \(m_i = k \) for all vertices \(i \in V G \), \(G \) is called \textbf{pseudo k-regular} in [20]. For convenience, we rearrange the vertices of \(G \) by \(1, 2, \ldots, n \) such that \(m_1 \geq m_2 \geq \cdots \geq m_n \). Let \(a_1(G) \) be the maximum eigenvalue of adjacency matrix \(A \) associated with \(G \), and we have following.

Let \(B = D^{-1} A D \), where \(D \) is the degree matrix and \(A \) is the adjacency matrix of \(G \). Then \(B \) is a nonnegative irreducible \(n \times n \) matrix. By Perron-Frobenius Theorem in [16], we have \(a_1(G) \leq m_1 \) with equality if and only if \(G \) is a pseudo \(k \)-regular graph.

In 2011, Chen, Pan and Zhang [3] proved the following.

Theorem 1.1. Let \(a := \max \{d_i/d_j \mid 1 \leq i, j \leq n\} \). Then

\[
a_1(G) \leq \frac{m_2 - a + \sqrt{(m_2 + a)^2 + 4a(m_1 - m_2)}}{2}
\]

with equality if and only if \(G \) is a pseudo \(k \)-regular graph.
And in 2014, Huang and Weng [12] proved the following.

Theorem 1.2. For any \(b \geq \max \{d_i/d_j \mid ij \in EG \} \) and \(1 \leq l \leq n \),

\[
a_1(G) \leq \frac{m_l - b + \sqrt{(m_l + b)^2 + 4b \sum_{i=1}^{l-1} (m_i - m_l)}}{2}
\]

with equality if and only if \(G \) is a pseudo \(k \)-regular graph.

This thesis studies degree sequence together with average 2-degree sequence of a graph. Thus we define the sequence \(\{(d_i, m_i)\}_{i \in V_G} \) of pairs as a degree pairs.

\begin{figure}[h]
\centering
\includegraphics[width=0.7\textwidth]{fig1.png}
\caption{Two graphs with different sequences of degree pairs \((d_i, m_i)\).}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=0.7\textwidth]{fig2.png}
\caption{Two graphs with the same sequence of degree pairs \((d_i, m_i)\).}
\end{figure}
This thesis is organized as follows. In Chapter 2, we introduce some basic results about degree pairs. In Chapter 3, we prove that if G is pseudo k-regular then $k \in \mathbb{N}$, and give a family of pseudo k-regular graphs T_k. Furthermore, we prove that T_k is the only pseudo k-regular tree for each k. We also consider the case when the maximum degree of G is $k^2 - k$, and give some basic results. In the end, we give more results of pseudo 3-regular graphs. And characterize all the pseudo 3-regular graph within ten vertices but not regular.
Chapter 2

Degree pairs

Let G be a simple graph with vertex set $VG = \{1, 2, \ldots, n\}$, edge set EG, and sequence $\{(d_i, m_i)\}_{i \in VG}$ degree pairs. The following lemma provides a feasible condition of degree pairs.

Lemma 2.1.

$$\sum_{i \in VG} d_i m_i = \sum_{i \in VG} d_i^2.$$

Proof.

$$\sum_{i \in VG} d_i m_i = \sum_{i \in VG} d_i \sum_{j \in EG}d_j = \sum_{i \in VG} \sum_{j \in EG} d_j = \sum_{i \in VG} d_i = \sum_{i \in VG} d_i^2.$$

We give a sequence $A = \{(1, 3), (1, 3), (2, 3), (3, 2), (3, 2)\}$, and a sequence $B = \{(1, 4), (3, 2), (3, 3), (3, 3), (4, 2)\}$. Observe that sequence A matches the condition in Lemma 2.1, and is a sequence of degree pairs of the graph as shown in Figure 2.1. But sequence B does not match the condition in Lemma 2.1, so its not a sequence of degree pairs of any graph.
Here is another feasible condition for degree pairs.

Lemma 2.2. There are even number of odd values d_im_i among $i \in VG$.

Proof. Since $\sum_{i \in VG} d_i$ is even, there are even number of odd d_i, and so does d_i^2. Hence $\sum_{i \in VG} d_im_i = \sum_{i \in VG} d_i^2$ is even. \hspace{1cm} \Box

Corollary 2.3.

$$\sum_{i \in VG} m_i^2 \geq \sum_{i \in VG} d_i^2$$

with equality if and only if $m_i = d_i = k$ for all i.

Proof.

$$(\sum_{i \in VG} d_i^2)(\sum_{i \in VG} m_i^2) \geq (\sum_{i \in VG} d_im_i)^2 = (\sum_{i \in VG} d_i^2)^2$$

and equality if and only if $m_i = cd_i$ for all $i \in VG$, where $c = 1$ by the Lemma 2.1. This is also equivalent to that all neighbors of a vertex of minimum degree k also have degree k. \hspace{1cm} \Box

Degree sequence gives hints of graph properties. For example, the well-known fact $|EG| = \frac{1}{2} \sum_{i \in VG} d_i$ expressed the number of edges of a graph as a sum its degree sequence.

The sequence of degree pairs give more hints of graph structure. In general, $d_im_i \geq |G_1(i)| + |G_2(i)|$, and there are at least $(d_im_i - n)/2$ triangles based on the vertex i. 7
Proposition 2.4. If $\max_{i \in VG} d_i m_i \geq n$ then the graph has girth at most 4.

Proof. If the graph has girth at least 5 then

$$n - 1 = |VG| - 1 \geq |G_1(i) + G_2(i)| = d_i m_i.$$

for any $i \in VG$. \hfill \Box

Figure 2.2: A graph has girth at most 4.

In Figure 2.2, we observe that $\max_{i \in VG} d_i m_i = 8 \geq 6 = |VG|$

The distance $d(x, y)$ between two vertices x and y of a graph is the minimum length of the paths connecting them. Let G^2 be the square of G, denote the graph with $VG^2 = VG$ and $EG^2 = \{xy \mid d(x, y) \leq 2\}$. The independence number of G is $\alpha(G) = \max\{|S| \mid S \subseteq VG, S \text{ is the independent set of } G\}$.

Proposition 2.5.

$$\alpha(G^2) \geq \sum_{i \in VG} \frac{1}{1 + d_i m_i},$$

where $\alpha(G^2)$ is the independence number of the square of G.

Proof. If a vertex is picked equally in random then the probability of a vertex i appears before those vertices in $G_1(i) \cap G_2(i)$ is $(1 + |G_1(i)| + |G_2(i)|)^{-1}$. Hence the expected size of a set consisting of these i is $\sum_{i \in VG} (1 + |G_1(i)| + |G_2(i)|)^{-1}$, which is at least $\sum_{i \in VG} \frac{1}{1 + d_i m_i}$, \hfill \Box

8
The following lemma will be used later.

Lemma 2.6. \(d_i \leq m_i(m_j - 1) + 1 \) for any \(j \) with \(ji \in EG \) and \(d_j \leq m_i \).
Moreover the above equality holds if and only if \(d_j = m_i \) and all neighbors of \(j \) excluding \(i \) have degree 1.

Proof. Pick \(j \) such that \(ji \in EG \) and \(d_j \leq m_i \). Then \(d_jm_j \geq d_i + (d_j - 1) \cdot 1 \).
Hence
\[
m_i(m_j - 1) + 1 \geq d_j(m_j - 1) + 1 \geq d_i.
\]
\(\square \)
Chapter 3

Pseudo k-regular graphs

We now turn to the study of pseudo k-regular graphs, i.e. $m_i = k$ for all i. We try to give some theories for pseudo k-regular graphs.

From the definition of pseudo k-regular graphs, $k \in \mathbb{Q}$, but indeed we have the following.

Proposition 3.1. If G is pseudo k-regular then $k \in \mathbb{N}$.

Proof. Let A be the adjacency matrix of G, and note that

$$(d_1, d_2, \ldots, d_n)A = k(d_1, d_2, \ldots, d_n).$$

Being a zero of the characteristic polynomial of A, k is an algebraic integer. Since k is also a positive rational number, k is indeed a positive integer. □

Obviously, any k-regular graph is a pseudo k-regular graph. However, a pseudo k-regular graph may not be a regular graph. An interesting problem is to characterize all the non-regular pseudo k-regular graphs. There are some examples in [12] of pseudo k-regular graphs that are not regular in the following Example 3.2.
Example 3.2. The graphs in Figure 3.1, 3.2, and 3.3 are pseudo k-regular but not regular.

Figure 3.1: A graph with $m_i = 2$.

Figure 3.2: A graph with $m_i = 3$.

Figure 3.3: A graph with $m_i = 4$.

It is natural to ask when a pseudo k-regular graph attains the maximum number of edges when the order n of a graph is given.
Theorem 3.3. A pseudo k-regular graph has at most $nk/2$ edges, and the maximum is obtained if and only if the graph is regular.

Proof. From

$$2k|EG| = \sum_{i \in V_G} d_i m_i = \sum_{i \in V_G} d_i^2 \geq (\sum_{i \in V_G} d_i)^2 / n = 4|EG|^2 / n,$$

we have $|EG| \leq nk/2$ and equality is obtained if and only if d_i is a constant. \qed

We shall study the connected pseudo k-regular graphs of order n which attain the minimum number of edges, i.e. pseudo k-regular trees. We also want to study connected pseudo k-regular graphs of order n with maximal degree among such graphs.

Definition 3.4. Let T_k be the tree of order $k^3 - k^2 + k + 1$ whose root has degree $k^2 - k + 1$ and each neighbor of the root has $k - 1$ children as leafs.

![Figure 3.4: The tree T_2.](image)

Figure 3.4: The tree T_2.

![Figure 3.5: The tree T_3.](image)

Figure 3.5: The tree T_3.

Note that \(T_1 \) is exactly the complete graph \(K_2 \). For each \(k \geq 2 \), \(T_k \) exists and provides an example for a non-regular pseudo \(k \)-regular graph.

Let \(\Delta(G) = \max\{d_i \mid i \in VG\} \) be the maximal degree of \(G \). We have the following result.

Theorem 3.5. Let \(G \) be a connected graph with \(m_i \leq k \) for all \(i \in VG \) and some \(k \in \mathbb{N} \). Then \(\Delta(G) \leq k^2 - k + 1 \). Moreover the following (i)-(ii) are equivalent.

(i) \(\Delta(G) = k^2 - k + 1 \).

(ii) \(G \) is the tree \(T_k \).

Proof. Choose \(i \) such that \(d_i = \Delta(G) \). Then by Proposition 2.6, \(\Delta(G) = d_i \leq m_i(m_j - 1) + 1 = k^2 - k + 1 \) for any \(j \) with \(ji \in EG \) and \(d_j \leq m_i \). Moreover \(\Delta(G) = k^2 - k + 1 \) if and only if \(d_j = m_j = m_i = k \) and \(d_z = 1 \) for all neighbors \(z \neq i \) of \(j \). Hence (i) and (ii) are equivalent. \(\square \)

We have seen that the degree of a neighbor of maximum degree vertex is \(k \) in \(T_k \). We are interested in what other vertices have this property.

Lemma 3.6. Let \(G \) be a pseudo \(k \)-regular graph. Then the following (i)-(ii) hold.

(i) If \(z \) is a vertex of degree 1 then \(k \) is the degree of the neighbor of \(z \).

(ii) If \(ij \) is an edge with \(2 \leq d_j < k \) then \(2 \leq d_i \leq k^2 - 3k + 4 \), with the second equality if and only if all neighbors of \(j \) except \(i \) have degree 2.
Proof. (i) is clear. To prove (ii), note that $d_i \neq 1$, otherwise $d_j = k$, a contradiction. Indeed $d_z \neq 1$ for any neighbors z of j. Hence

$$d_i + 2(d_j - 1) \leq d_j m_j = d_j k.$$

Hence

$$d_i \leq d_j (k - 2) + 2 \leq k^2 - 3k + 4.$$

\[\square\]

Corollary 3.7. Let G be a pseudo k-regular graph of order n with a vertex of degree $d_i \geq k^2 - 3k + 5$. Then

(i) Any neighbor j of i has degree $d_j = k$;

(ii) The order of G is at least $f(k) := \lceil (5k^4 - 31k^3 + 94k^2 - 140k + 100)/k^2 \rceil$.

Proof. (i) From Lemma 3.6 (i) $d_j \neq 1$, and from Lemma 3.6 (ii) $d_j \geq k$. This is true for all neighbors j of i. Hence $d_j = k$.

(ii) From Lemma 2.1 $\sum_{w \in VG} d_w^2 = \sum_{w \in VG} d_w m_w$,

$$d_i^2 + d_i k^2 + \sum_{w \not\in \{i\} \cup G_1(i)} d_w^2 = kd_i + k^2 d_i + \sum_{w \not\in \{i\} \cup G_1(i)} kd_w.$$

Hence

$$k^4 - 7k^3 + 22k^2 - 35k + 25 \leq \sum_{w \not\in \{i\} \cup G_1(i)} d_w (k - d_w) \leq \left(\frac{k}{2}\right)^2 (n - 1 - (k^2 - 3k + 5)).$$

\[\square\]
Note that for \(k = 3 \), \(k^2 - 3k + 5 = 5 \) and \(f(3) = 11 \).

Now we try to characterize the pseudo \(k \)-regular graphs. It is easily seen that a graph is pseudo \(k \)-regular if and only if each component of it is pseudo \(k \)-regular. Hence we just focus on the characterization of connected pseudo \(k \)-regular graphs.

The first two cases of pseudo \(k \)-regular graphs are easy to settle.

Lemma 3.8. If \(G \) is connected pseudo 1-regular then \(G \) is \(K_2 \).

Lemma 3.9. If \(G \) is connected pseudo 2-regular then \(G \) is a cycle or \(T_2 \).

Proof. Note that \(\Delta(G) = 2 \) or 3, and the first implies that \(G \) is a cycle and the latter implies that \(G = T_2 \).

Pseudo \(k \)-regular graphs is also called harmonic graphs [8], and finite harmonic tree are already given. But for the complete of this thesis we reprove the Theorem as follow.

Theorem 3.10. [8, Theorem 2.1] If \(G \) is a pseudo \(k \)-regular tree, then \(G = T_k \).

Proof. By Lemma 3.8 and Lemma 3.9, the assumption holds for each \(k \leq 2 \). Let \(G = (VG, EG) \) be a pseudo \(k \)-regular tree with \(k \geq 3 \). Pick any \(v \in VG \) with \(d_v \geq 2 \) as a root. Since a star is not pseudo \(k \)-regular, there exists a leaf \(x \) with parent \(y \neq v \), such that all children of \(y \) are leaves. Then \(y \) has degree \(k \) by Lemma 3.6 and has \(k - 1 \) children as leaves. Hence the degree of root \(d_v = km_y - (k - 1) = k^2 - k + 1 \). This concludes that \(G = T_k \) by Definition 3.4.
We shall study pseudo \(k \)-regular graph with the second largest degree \(k^2 - k \).

Definition 3.11. Let \(U_k \) be the tree of order \(k^3 - k^2 + 1 \) whose root has degree \(k^2 - k \) and each neighbor of the root has \(k - 1 \) children as leaves.

![Figure 3.6: The graph \(U_3 \) with type A vertices.](image)

We shall select some vertices from a graph and call them **type A** vertices. In general a type A vertex has degree 1 and its unique neighbor \(j \) has \(d_j = k \) and \(m_j = (k^2 - t)/k \), where \(t \) is the number of type A neighbors of \(j \) (in \(U_k \), \(t = 1 \)).

Let \(M_k \) be the graph obtained from \(U_k \) by identifying \((k^2 - k)/2 \) pairs of type A vertices into \((k^2 - k)/2 \) vertices. Then \(M_k \) gives a pseudo \(k \)-regular graphs with maximum degree \(k^2 - k \) for each \(k \geq 3 \).

![Figure 3.7: The graph \(M_3 \).](image)
Proposition 3.12. If G is a pseudo k-regular graph with a vertex x of degree $k^2 - k$, then the subgraph induced on $\{x\} \cup G_1(x) \cup G_2(x)$ is U_k with possibly even number of vertices in type A being identified in pairs. Moreover a type A vertex not been identified with another one has degree 2 in G.

Proof. Let y be a neighbor of x. Then y has degree $d_y = k$ by Corollary 3.7(i), and has a neighbor $z \neq x$ of degree $d_z \geq 2$ by Theorem 3.5. Hence $k^2 = d_y m_y \geq d_x + d_z + (d_y - 2) \geq (k^2 - k) + 2 + (k - 2) = k^2$. This implies that $d_z = 2$ and the remaining vertices $w \not\in \{x, z\}$ of y have degree $d_w = 1$. Note that z, w have distance two to x. As one neighbor of z has degree k, the other neighbor of z also has degree k. Hence the vertex z might adjacent to some neighbor of x or to some vertex of degree k and at distance 3 to x. \(\square\)

Let \mathcal{E}_k be a family of graphs constructed as the following. Firstly pick a bipartite $(k-1)$-regular graph of order $2(2k-1)$ with bipartition $X \cup Y$, where $|X| = |Y| = 2k - 1$. Then add a new vertex connecting to all vertices of X. One can check that graphs in \mathcal{E}_k are pseudo k-regular of order $4k-1$ with maximum degree $2k-1$.

\[\begin{array}{c}
\text{Figure 3.8: The graphs in \mathcal{E}_k.}
\end{array}\]
By a **switching** on G, we mean a process to obtain a new graph G' by removing two edges xy and uv such that $d_x = d_u$ and $d_y = d_v$ and adding two new edges xv and yu to form a new graph, where xv and yu are not edges in G. In this case G and G' are called **switching equivalent**.

![Figure 3.9: Switching.](image)

![Figure 3.10: The graph $E_3 \in \mathcal{E}_3$.](image)

Every graph in \mathcal{E}_3 is switching equivalent to E_3.

From Corollary 3.7 (ii), we know a pseudo 3-regular graph with maximum degree at least 5 has at least $f(3) = 11$ vertices. All the graphs in \mathcal{E}_k are extremal for this property.

Let \mathcal{F}_k be a family of graphs constructed as the following. Firstly pick any $(k-2)$-regular graph H of order $(2k-1)(k-1)$, not necessary connected.
Secondly add \((2k - 1)(k - 1)\) new vertices of degree 1 by connecting them to vertices of \(H\) one by one. Finally partition the vertex set of \(H\) into \(k - 1\) blocks of equal size \(2k - 1\) and connect all vertices in a block to a new vertex to make it degree \(2k - 1\). One can check that graphs in \(\mathcal{F}_k\) are pseudo \(k\)-regular with maximum degree \(2k - 1\).

![Figure 3.11: The graphs in \(\mathcal{F}_3\).](image)

![Figure 3.12: The graph \(F_3 \in \mathcal{F}_3\).](image)

Every graph in \(\mathcal{F}_3\) is switching equivalent to \(F_3\).

Now we restrict our attention to pseudo 3-regular graph \(G\).
Note that the maximum degree $3 \leq \Delta(G) \leq k^2 - k + 1 = 7$ and the case $\Delta(G) = 7$ is solved by Theorem 3.5 and Theorem 3.10.

The local structure of a maximum degree $\Delta(G) = 6$ is obtained in Proposition 3.12 for $k = 3$.

The following lemma is immediate from Corollary 3.7.

Lemma 3.13. Let G be a pseudo 3-regular graph with a vertex i of degree $d_i = 5$. Then all neighbors j of i have degree $d_j = 3$, and the neighbors of j have degree sequence $(5, 2, 2)$ or $(5, 3, 1)$. □

Proposition 3.14. If G is a pseudo 3-regular graph with a vertex i of degree 5, then the subgraph induced on $G_1(i)$ is union of disjoint edges or isolated vertices, and each endpoint of an edge is adjacent to a vertex of degree 1 in $G_2(i)$ and each isolated vertex is adjacent to two vertices in $G_2(i)$ with degrees $(3, 1)$ or $(2, 2)$. □

![Figure 3.13: Graphs with $\Delta(G) = 5$.](image)

Now we study the local structure of a vertex of degree 4 in a pseudo k-regular graph.

20
Lemma 3.15. Let G be a pseudo 3-regular graph. Then the neighbor degree sequence of a vertex of degree 4 is $(3, 3, 3, 3)$, $(4, 3, 3, 2)$, or $(4, 4, 2, 2)$.

Proof. Let (a, b, c, d) be a degree sequence of the neighbors of a vertex i of degree $d_i = 4$, where $a \geq b \geq c \geq d$. Note that $a \leq 4$ otherwise $d_i = 3$ by Corollary 3.7 (i). Then $a + b + c + d = d_i \cdot 3 = 12$. By checking all possible such sequences (a, b, c, d), we find these are as listed in the lemma or $(4, 4, 3, 1)$, which is impossible since the neighbor of a leaf must have degree 3. \qed

Proposition 3.16. If G is a pseudo 3-regular graph with a vertex i of degree 4 and the neighbor degree sequence of i is $(3, 3, 3, 3)$, then the subgraph induced on $G_1(i)$ is union of disjoint edges or isolated vertices, and each endpoint of an edge is adjacent to a vertex of degree 2 in $G_2(i)$ (possibly identified in pairs) and each isolated vertex is adjacent to two vertices in $G_2(i)$ with degrees 2, 3 or degrees 1, 4. \qed

Figure 3.14: Graphs with $\Delta(G) = 4$ and the neighbor degree sequence of a vertex of degree 4 is $(3, 3, 3, 3)$.

In Figure 3.14 we have $1 + |G_1(i)| + |G_2(i)| \geq 7$. 21
Figure 3.15: The graph has $\Delta(G) = 4$ with degree sequence $(3, 3, 3, 3)$.

Proposition 3.17. If G is a pseudo 3-regular graph with a vertex i of degree 4 and the neighbor degree sequence of i is $(4, 3, 3, 2)$, then the neighbor of i with degree 2 in G is isolated in $G_1(i)$, and the neighbor of i with degree 3 in G has at most one neighbor in $G_1(i)$.

Figure 3.16: Graphs with $\Delta(G) = 4$ and the neighbor degree sequence of a vertex of degree 4 is $(4, 3, 3, 2)$.

In Figure 3.16 we have $1 + |G_1(i)| + |G_2(i)| \geq 8$.

Figure 3.17: The graph has $\Delta(G) = 4$ with degree sequence $(4, 3, 3, 2)$.
Proposition 3.18. If G is a pseudo 3-regular graph with a vertex i of degree 4 and the neighbor degree sequence of i is $(4, 4, 2, 2)$, then the neighbor of i with degree 2 in G is not connected to a neighbor of i with degree 4 in G. □

Figure 3.18: Graphs with $\Delta(G) = 4$ and the neighbor degree sequence of a vertex of degree 4 is $(4, 4, 2, 2)$.

In Figure 3.18 we have $1 + |G_1(i)| + |G_2(i)| \geq 9$.

Figure 3.19: The graph has $\Delta(G) = 4$ with degree sequence $(4, 4, 2, 2)$.

We will list all pseudo 3-regular graphs which are not regular of order within 10. From Corollary 3.7(ii), such graphs have maximum degree 4.
Lemma 3.19. Let G be a connected pseudo 3-regular graph with $\Delta(G) = 4$ and $a_j := |\{i \mid d_i = j\}|$ for $j = 1, 2, 3, 4$. Then

(i) $a_1 + a_2 = 2a_4$,

(ii) $|VG| = a_3 + 3a_4$,

(iii) $a_1 \leq a_3$,

(iv) a_1, a_2, a_3 have same parity.

Proof. (i) and (ii) follow from solving

$$0 = \sum_{i \in VG} (m_i - d_i)d_i = \sum_{i \in VG} (3 - d_i)d_i = a_1 \cdot 2 + a_2 \cdot 2 + a_4 (-4).$$

(iii) follows since there exists an injection from the set of degree one vertices into set of degree 3 vertices. Since there are even number of vertices of odd degrees, $a_1 + a_3$ is even. The remaining follows from (i) and (ii). This proves (iv). \qed

From the above lemma, the following is the possible sequence of (n, a_4, a_3, a_2, a_1) for a connected pseudo 3-regular graph of order n with $\Delta(G) = 4$ and $7 \leq n \leq 10$.

$$(n, a_4, a_3, a_2, a_1)$$

$$=(10, 3, 1, 5, 1), (10, 2, 4, 4, 0), (10, 2, 4, 2, 2), (10, 2, 4, 0, 4), (10, 1, 7, 1, 1)$$

$$=(9, 3, 0, 6, 0), (9, 2, 3, 3, 1), (9, 2, 3, 1, 3), (9, 1, 6, 2, 0), (9, 1, 6, 0, 2)$$

$$=(8, 2, 2, 4, 0), (8, 2, 2, 2, 2), (8, 1, 5, 1, 1)$$

$$=(7, 2, 1, 3, 1), (7, 1, 4, 2, 0), (7, 1, 4, 0, 2).$$

24
One can check directly that there is no graph whose corresponding sequence \((n, a_4, a_3, a_2, a_1)\) is \((10, 3, 1, 5, 1), (10, 2, 4, 2, 2), (10, 1, 7, 1, 1), (9, 2, 3, 1, 3), (9, 1, 6, 0, 2), (8, 2, 2, 4, 0), (8, 1, 5, 1, 1), (7, 2, 1, 3, 1), \) or \((7, 1, 4, 0, 2)\).

Small pseudo 3-regular but not 3-regular graphs are listed as follows.

\[|VG| = 7: \]

\[
\begin{array}{c}
\text{Figure 3.20: Graphs with sequence } (n, a_4, a_3, a_2, a_1) = (7, 1, 4, 2, 0). \\
\end{array}
\]

\[|VG| = 8: \]

\[
\begin{array}{c}
\text{Figure 3.21: The graph with sequence } (n, a_4, a_3, a_2, a_1) = (8, 2, 2, 2, 2). \\
\end{array}
\]
$|VG| = 9$:

Figure 3.22: Graphs with sequence $(n, a_4, a_3, a_2, a_1) = (9, 3, 0, 6, 0)$.

Figure 3.23: The graph with sequence $(n, a_4, a_3, a_2, a_1) = (9, 2, 3, 3, 1)$.

Figure 3.24: Graphs with sequence $(n, a_4, a_3, a_2, a_1) = (9, 1, 6, 2, 0)$.
$|VG| = 10$:

(Switching equivalent)

Figure 3.25: Graphs with sequence $(n, a_4, a_3, a_2, a_1) = (10, 2, 4, 4, 0)$.

Figure 3.26: The graph with sequence $(n, a_4, a_3, a_2, a_1) = (10, 2, 4, 0, 4)$.

Under what kind of partial information of the pairs (d_i, m_i), one can conclude the diameter of G is at most 6.

In our study of pseudo k-regular graph with a vertex of the maximum degree $k^2 - k + 1$, the obtained graph T_k has diameter 4.

The vertices with large degrees should also play an important role in other graphs.
Bibliography

