Smooth Support Vector Machines for Classification and Regression

Lee, Yuh-Jye
National Taiwan University of Science and Technology
Joint work with Olvi Mangasarian, W.-F. Hsieh, C.-M. Huang, and Sun-Yun Huang

Research Seminar “Mathematical Statistics”
Humboldt University, Berlin, Germany

January 24, 2007
Outline

- Binary classification problem
- Conventional Support Vector Machines
- Kernel trick and nonlinear SVM
- SSVM: Smooth Support Vector Machines
 - For classification and regression problems
- Newton Armijo algorithm for SSVMs
 - A global convergent algorithm at a quadratic rate
- Reduced Support Vector Machines:
 - Deal with massive datasets
- Conclusions
Binary Classification Problem

(A Fundamental Problem in Data Mining)

- Find a decision function (classifier) to discriminate two categories data sets.

- Supervised learning in Machine Learning
 - Decision Tree, Neural Network, k-NN and Support Vector Machines, etc.

- Discrimination Analysis in Statistics
 - Fisher Linear Discriminator

- Successful applications:
 - Marketing, Bioinformatics, Fraud detection
Binary Classification Problem

Given a training dataset
\[S = \{(x^i, y_i) | x^i \in \mathbb{R}^n, y_i \in \{-1, 1\}, i = 1, \ldots, m\} \]
\[x^i \in A_+ \iff y_i = 1 \quad \& \quad x^i \in A_- \iff y_i = -1 \]

Main goal:
Predict the unseen class label for new data

Find a function \(f : \mathbb{R}^n \rightarrow \mathbb{R} \) by learning from data
\[f(x) \geq 0 \Rightarrow x \in A_+ \quad \& \quad f(x) < 0 \Rightarrow x \in A_- \]

The simplest function is linear: \(f(x) = w'x + b \)
Binary Classification Problem

Linearly Separable Case

\[x'w + b = 0 \]
\[x'w + b = +1 \]
\[x'w + b = -1 \]
Breast Cancer Diagnosis Application
97% Tenfold Cross Validation Correctness
494 Benign, 286 Malignant
Binary Classification Problem

Linearly Separable Case

$x'w + b = 0$

$x'w + b = +1$

$x'w + b = -1$

Malignant

Benign
Support Vector Machines
Maximizing the Margin between Bounding Planes

\[x'w + b = 1 \]

\[x'w + b = -1 \]

\[\frac{2}{\|w\|_2} = \text{Margin} \]
Why Use Support Vector Machines?

Powerful tools for Data Mining

- SVM classifier is an optimally defined surface
- SVMs have a good geometric interpretation
- SVMs can be generated very efficiently
- Can be extended from linear to nonlinear case
 - Typically nonlinear in the input space
 - Linear in a higher dimensional “feature space”
 - Implicitly defined by a kernel function
- Have a sound theoretical foundation
 - Based on Statistical Learning Theory
Summary of Notations

Let \(S = \{(x^1, y_1), (x^2, y_2), \ldots (x^m, y_m)\} \) be a training dataset and represented by matrices

\[
A = \begin{bmatrix}
(x^1)'
(x^2)'
\vdots
(x^m)'
\end{bmatrix} \in \mathbb{R}^{m \times n}, \\
D = \begin{bmatrix}
y_1 & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & y_m
\end{bmatrix} \in \mathbb{R}^{m \times m}
\]

\(A_iw + b \geq +1, \text{ for } D_{ii} = +1, \)

\(A_iw + b \leq -1, \text{ for } D_{ii} = -1 \)

equivalent to

\[D(Aw + 1b) \geq 1, \text{ where } 1 = [1, 1, \ldots, 1]' \in \mathbb{R}^m. \]
2-Norm Soft Margin (Primal form):
\[
\min_{(w,b,\xi) \in \mathbb{R}^{n+1+m}} \frac{1}{2}||w||_2^2 + \frac{C}{2}||\xi||_2^2 \\
D(Aw + 1b) + \xi \geq 1
\]

1-Norm Soft Margin (Primal form):
\[
\min_{(w,b,\xi) \in \mathbb{R}^{n+1+m}} \frac{1}{2}||w||_2^2 + C1^t\xi \\
D(Aw + 1b) + \xi \geq 1, \quad \xi \geq 0
\]

- Margin is maximized by minimizing reciprocal of margin.
Tuning Procedure

How to determine C?

The final value of parameter is the one with the maximum testing set correctness!
Support Vector Machine in Dual Form

(Motivation of the Kernel Trick)

1-Norm Soft Margin (Dual form):

\[
\max_{\alpha \in \mathbb{R}^m} \quad 1'\alpha - \frac{1}{2}\alpha'DAA'D\alpha
\]

\[
1'D\alpha = 0, \quad 0 \leq \alpha \leq C1
\]

- The normal vector \(w = A'D\alpha = \sum_{\alpha_j > 0} y_i\alpha_iA_i' \)
- The bias, \(b \) is determined by KKT conditions
- The decision function (classifier)

\[
f(x) = \alpha'DAx + b = \sum_{\alpha_i > 0} y_i\alpha_i(A_ix) + b
\]

- All we need to know is the inner products of data
Two-spiral Dataset
(94 White Dots & 94 Red Dots)
\[X \xrightarrow{\phi} F \]
Kernel Technique

Based on Mercer’s Condition (1909)

- The value of kernel function represents the inner product of two training points in feature space.

- Kernel functions merge two steps:
 1. map input data from input space to feature space (might be infinite dim.)
 2. do inner product in the feature space.
Examples of Kernel

\[K(A, B) : \mathbb{R}^{m \times n} \times \mathbb{R}^{n \times l} \longrightarrow \mathbb{R}^{m \times l} \]

\(A \in \mathbb{R}^{m \times n}, a \in \mathbb{R}^{m}, \mu \in \mathbb{R}, \ d \text{ is an integer:} \)

- **Polynomial Kernel:** \((AA' + \mu aa')^d\)

 (Linear Kernel \(AA': \mu = 0, d = 1\))

- **Gaussian (Radial Basis) Kernel:**
 \[K(A, A')_{ij} = e^{-\mu \|A_i - A_j\|_2^2}, \ i, j = 1, \ldots, m \]

➢ The \(ij\)-entry of \(K(A, A')\) represents the “similarity” of data points \(A_i\) and \(A_j\)
Nonlinear Support Vector Machines

(Applying the Kernel Trick)

1-Norm Soft Margin Linear SVM:

\[
\max_{\alpha \in \mathbb{R}^m} 1'\alpha - \frac{1}{2}\alpha' D A A' D \alpha \quad \text{s.t.} \quad 1'D\alpha = 0, \ 0 \leq \alpha \leq C1
\]

- Applying the kernel trick and running linear SVM in the feature space without knowing the nonlinear mapping

1-Norm Soft Margin Nonlinear SVM:

\[
\max_{\alpha \in \mathbb{R}^m} 1'\alpha - \frac{1}{2}\alpha' D K(A, A') D \alpha \\
\text{s.t.} \quad 1'D\alpha = 0, \ 0 \leq \alpha \leq C1
\]

- All you need to do is replacing \(A A' \) by \(K(A, A') \)
1-Norm SVM

(Different Measure of Margin)

1-Norm SVM:

\[
\min_{(w,b,\xi) \in \mathbb{R}^{n+1+m}} \|w\|_1 + C1'\xi \\
D(Aw + 1b) + \xi \geq 1 \\
\xi \geq 0
\]

Equivalent to:

\[
\min_{(s,w,b,\xi) \in \mathbb{R}^{2n+1+m}} 1s + C1'\xi \\
D(Aw + 1b) + \xi \geq 1 \\
- s \leq w \leq s \\
\xi \geq 0
\]

Good for feature selection and similar to the LASSO
Smooth Support Vector Machines
SVM as an Unconstrained Minimization Problem

\[\min_{w, b} \frac{C}{2} \| \xi \|^2 + \frac{1}{2}(\| w \|^2 + b^2) \]
\[\text{s. t. } D(Aw + 1b) + \xi \geq 1 \]

At the solution of (QP):
\[\xi = (1 - D(Aw + 1b))_+ \]
where \((\cdot)_+ = \max\{\cdot, 0\}\)

Hence (QP) is equivalent to the nonsmooth SVM:
\[\min_{w, b} \frac{C}{2} \| (1 - D(Aw + 1b))_+ \|^2 + \frac{1}{2}(\| w \|^2 + b^2) \]

- Change (QP) into an unconstrained MP
- Reduce \((n+1+m)\) variables to \((n+1)\) variables
Smooth the Plus Function:
\[p(x, \beta) := x + \frac{1}{\beta} \log(1 + \epsilon^{-\beta x}) \]
SSVM: Smooth Support Vector Machine

- Replacing the plus function \((\cdot)_+\) in the nonsmooth SVM by the smooth \(p(\cdot, \beta)\), gives our SSVM:

\[
\min_{(w, b) \in \mathbb{R}^{n+2}} \frac{C}{2} \|p((1 - D(Aw + 1b)), \beta)\|_2^2 + \frac{1}{2}(\|w\|_2^2 + b^2)
\]

- The solution of SSVM converges to the solution of nonsmooth SVM as \(\beta\) goes to infinity.
Newton-Armijo Method: Quadratic Approximation of SSVM

- The sequence $\{(w^i, b_i)\}$ generated by solving a quadratic approximation of SSVM, converges to the unique solution (w^*, b^*) of SSVM at a quadratic rate.
 - Converges in 6 to 8 iterations
- At each iteration we solve a linear system of:
 - $n+1$ equations in $n+1$ variables
 - Complexity depends on dimension of input space
- It might be needed to select a stepsize
Newton-Armijo Algorithm

\[\Phi_\beta(w, b) = \frac{c}{2} \| p((1 - D(Aw + 1b)), \beta) \|_2^2 + \frac{1}{2} (\| w \|_2^2 + b^2) \]

Start with any \((w^0, b_0) \in R^{n+1}\). Having \((w^i, b_i)\), stop if \(\nabla \Phi_\beta(w^i, b_i) = 0\), else:

(i) Newton Direction:

\[\nabla^2 \Phi_\beta(w^i, b_i) d^i = -\nabla \Phi_\beta(w^i, b_i)' \]

(ii) Armijo Stepsize:

\[(w^{i+1}, b_{i+1}) = (w^i, b_i) + \lambda_id^i \]

\[\lambda_i \in \{1, \frac{1}{2}, \frac{1}{4}, \ldots\} \]

such that Armijo’s rule is satisfied

globally and quadratically converge to unique solution in a finite number of steps
Comparisons of SSVM with other SVMs

Tenfold test set correctness % (best in Red)

CPU time in seconds

<table>
<thead>
<tr>
<th>Dataset Size</th>
<th>SSVM Linear Eqns.</th>
<th>SVM $|\cdot|_1$ LP</th>
<th>SVM $|\cdot|_2^2$ QP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cleveland Heart 297 x 13</td>
<td>86.13 1.63</td>
<td>84.55 18.71</td>
<td>72.12 67.55</td>
</tr>
<tr>
<td>BUPA Liver 345 x 6</td>
<td>70.33 1.05</td>
<td>64.03 19.94</td>
<td>69.86 124.23</td>
</tr>
<tr>
<td>Ionosphere 351 x 34</td>
<td>89.63 3.69</td>
<td>86.10 42.41</td>
<td>89.17 128.15</td>
</tr>
<tr>
<td>Pima Indians 768 x 8</td>
<td>78.12 1.54</td>
<td>74.47 286.59</td>
<td>77.07 1138.0</td>
</tr>
<tr>
<td>WPBC(24 months) 155 x 32</td>
<td>83.47 2.32</td>
<td>71.08 6.25</td>
<td>82.02 12.50</td>
</tr>
<tr>
<td>WPBC(60 months) 110 x 22</td>
<td>68.18 1.03</td>
<td>66.23 3.72</td>
<td>61.83 4.91</td>
</tr>
</tbody>
</table>
Two-spiral Dataset
(94 White Dots & 94 Red Dots)
Nonlinear SVM Motivation

- **Linear SVM**: (Linear separator: \(x'w + b = 0\))

\[
\begin{align*}
\min_{\xi \geq 0, w, b} & \quad \frac{C}{2} \| \xi \|_2^2 + \frac{1}{2} (\| w \|_2^2 + b^2) \\
\text{s. t.} & \quad D(Aw + 1b) + \xi \geq 1
\end{align*}
\]

(QP)

By QP “duality”, \(w = A'D\alpha\). Maximizing the margin in the “dual space” gives:

\[
\begin{align*}
\min_{\xi \geq 0, \alpha, b} & \quad \frac{C}{2} \| \xi \|_2^2 + \frac{1}{2} (\| \alpha \|_2^2 + b^2) \\
\text{s. t.} & \quad D(AA'D\alpha + 1b) + \xi \geq 1
\end{align*}
\]

- **Dual SSVM with separator**: \(x'A'D\alpha + b = 0\)

\[
\min_{\alpha, b} \quad \frac{C}{2} \|p(1 - D(AA'D\alpha + 1b), \beta)\|_2^2 + \frac{1}{2} (\| \alpha \|_2^2 + b^2)
\]
Nonlinear Smooth SVM

Nonlinear Classifier: \(K(x', A') D\alpha + b = 0 \)

- Replace \(AA' \) by a nonlinear kernel \(K(A, A') \):
 \[
 \min_{\alpha, b} \frac{C}{2} \| p(1 - D(K(A, A') D\alpha + 1b, \beta)) \|_2^2 + \frac{1}{2}(\|\alpha\|_2^2 + b^2)
 \]

- Use Newton-Armijo algorithm to solve the problem
 - Each iteration solves \(m+1 \) linear equations in \(m+1 \) variables

- Nonlinear classifier depends on the data points with nonzero coefficients:
 \[
 K(x', A') D\alpha + b = \sum_{\alpha_j \neq 0} \alpha_j y_j K(A_j, x) + b = 0
 \]
Remark on Nonlinear SVMs

Dual Form vs. Primal Form

Nonlinear (Conventional) SVM in Dual form:

$$\max_{\alpha \in \mathbb{R}^m} \ 1'\alpha - \frac{1}{2}\alpha'DK(A, A')D\alpha$$

$$1'D\alpha = 0, \ 0 \leq \alpha \leq C1$$

O. L. Mangasarian
Generalized support vector machines.
Advances in Large Margin Classifiers, p.135-146, MIT Press, Cambridge, MA, 2000

Brings things back to Primal form

$$\min_{\alpha, b, \xi} \frac{C}{2}||\xi||^2_2 + \frac{1}{2}(||\alpha||^2_2 + b^2)$$

$$D(K(A, A')D\alpha + 1b) + \xi \geq 1$$
Multiclass Classification Problem

Consider the problem which given m training examples
$(x_1, y_1), \ldots, (x_m, y_m)$, where $x_i \in \mathbb{R}^n, i = 1, \ldots, m$ and $y_i \in \{1, \ldots, k\}$ is the class of x_i.

Main goal:

Predict the unseen class label for new data

Find k functions (classifiers) $f_j(x)$, $j \in \{1, \ldots, k\}$ by learning from data.

$$f_j(x) \geq f_{j'}(x) \Rightarrow x \in \{\text{class } j\}, \text{ for all } j' \neq j$$

The simplest function is linear: $f_j(x) = w_j'x + b_j$
MSSVM: Multiclass Smooth Support Vector Machine

- Single optimization formulation for Multiclass classification problem:

\[
\min_{(w,b,\xi) \in \mathbb{R}^{k(n+1+m)-m}} \frac{1}{2} \sum_{j=1}^{k} (w_j'w_j + b_j^2) + \frac{C}{2} \sum_{i=1}^{m} \sum_{j \neq y_i} (\xi_{ij})^2
\]

subject to:

\[
w_{y_i}'x_i + b_{y_i} \geq w_j'x_i + b_j + 1 - \xi_{ij}
\]

- SSVM for Multiclass classification problem:

\[
\min_{(v,b) \in \mathbb{R}^{k(m+1)}} \frac{1}{2} \sum_{j=1}^{k} (v_j'v_j + b_j^2) + \frac{C}{2} \sum_{i=1}^{m} \sum_{j \neq y_i} p((v_j' - v_{y_i}')K(A, x_i) + (b_j - b_{y_i}) + 1, \alpha)^2
\]
3-class Classification Problem

- Given three training datasets \(A^1 \), \(A^2 \) and \(A^3 \) for each distinct category respectively. The linear 3-SSVM formulation is as follows:

\[
\min_{\omega \in \mathbb{R}^{3(n+1)}} \frac{1}{2}\|\omega\|_2^2 + \frac{C}{2}\|p(B\omega + 1, \alpha)\|_2^2.
\]

- Here the matrix \(B \in \mathbb{R}^{2m \times 3(n+1)} \) consists of \(A^1 \), \(A^2 \), and \(A^3 \)

\(\omega \in \mathbb{R}^{3(n+1)} \) is the solution vector.

- We can also apply the 3-SSVM to multiclass classification problem very well. The idea is similar to the one-against-one method. We call it “Smooth One-One-Rest” (SOOR) method.
Synthetic Datasets
(For 3-class Classification Problems)

Linear Separable

Nonlinear Separable
Support Vector Regression

(Linear Case: \(f(x) = x'w + b\))

- Given the training set:

 \[S = \{(x^i, y_i) | x^i \in \mathbb{R}^n, y_i \in \mathbb{R}, i = 1, \ldots, m\}\]

- Find a linear function, \(f(x) = x'w + b\) such that \(f(x^i) = w'x^i + b \approx y_i, \forall i\)

- The \((w, b)\) guarantees the smallest overall experiment error made by \(f(x) = x'w + b\)
ε-Insensitive Loss Function

(Discard the Tiny Error)

- **ε**-insensitive loss function:

\[|\xi|_\epsilon = \max\{0, |\xi| - \epsilon\} = \begin{cases} 0 & \text{if } |\xi| \leq \epsilon \\ |\xi| - \epsilon & \text{otherwise} \end{cases} \]

- If \(\xi \in \mathbb{R}^n \) then \(|\xi|_\epsilon \in \mathbb{R}^n \) is defined as:

\[(|\xi|_\epsilon)_i = |\xi_i|_\epsilon , \ i = 1 \ldots n \]

- The loss made by the estimation function, \(f \) at the data point \((x^i, y_i)\) is

\[|f(x^i) - y_i|_\epsilon = \max\{0, |f(x^i) - y_i| - \epsilon\} \]
\(\epsilon \)-Insensitive Linear Regression

Find \((w, b)\) with the smallest overall error

\[f(x) = x'w + b \]
\(\epsilon \)-insensitive Support Vector Regression Model

- **Motivated by SVM:**
 - \(\| w \|_2 \) should be as small as possible
 - Some tiny error should be discarded

\[
\min_{(w,b,\xi) \in \mathbb{R}^{n+1+m}} \frac{1}{2} \| w \|_2^2 + C \mathbf{1}' \| \xi \|_{\epsilon}
\]

where \(\| \xi \|_{\epsilon} \in \mathbb{R}^m, \ (\| \xi \|_{\epsilon})_i = \max\{0, |A_i w + b - y_i| - \epsilon\} \)
Reformulated ε- SVR as a Constrained Minimization Problem

$$\min_{(w,b,\xi,\xi^*) \in \mathbb{R}^{n+1+2m}} \frac{1}{2}||w||_2^2 + C \mathbf{1}'(\xi + \xi^*)$$

subject to

$$y - Aw - \mathbf{1}b \leq \varepsilon \mathbf{1} + \xi$$
$$Aw + \mathbf{1}b - y \leq \varepsilon \mathbf{1} + \xi^*$$

$$\xi, \xi^* \geq 0$$

$n+1+2m$ variables and $2m$ constrains minimization problem

Enlarge the problem size and computational complexity for solving the problem
SV Regression by Minimizing Quadratic ϵ-Insensitive Loss

$$\min_{(w,b,\xi) \in \mathbb{R}^{n+1+m}} \frac{1}{2}(||w||^2_2 + b^2) + \frac{C}{2}||(\xi|_\epsilon)||^2_2$$

where $(|\xi|_\epsilon)_i = |y_i - (w^T x_i + b)|_\epsilon$

- We are going to “smooth” $||(\xi|_\epsilon)||^2_2$ and solve the unconstrained problem directly.

- The objective function is strongly convex
ε-insensitive Loss Function

\[(-x - \varepsilon)_+ \mid x \mid \varepsilon = (x - \varepsilon)_+ + (-x - \varepsilon)_+ + (x - \varepsilon)_+ \]
Quadratic ϵ-insensitive Loss Function

$$|x|^2_\epsilon = ((x - \epsilon)_+ + (-x - \epsilon)_+)^2$$

$$= (x - \epsilon)_+^2 + (-x - \epsilon)_+^2$$

$$(x - \epsilon)_+ \cdot (-x - \epsilon)_+ = 0$$
Use p^2_ϵ-function replace

Quadratic ϵ -insensitive Function

$$p^2_\epsilon(x, \beta) = (p(x - \epsilon, \beta))^2 + (p(-x - \epsilon, \beta))^2$$

where $p(x, \beta)$ is defined by

$$p(x, \beta) = x + \frac{1}{\beta} \log(1 + \exp^{-\beta x})$$

p -function with

$\beta=10$, $p(x, 10)$, $x\in[-3,3]$
\[|x|_\epsilon^2 \]

\[p_\epsilon^2(x, \beta), \quad \epsilon = 1, \quad \beta = 5 \]
\(\epsilon \)-insensitive Smooth Support Vector Regression

\[
\begin{aligned}
\min_{(w, b) \in \mathbb{R}^{n+1}} & \quad \Phi_{\epsilon, \alpha}(w, b) := \\
\min_{(w, b) \in \mathbb{R}^{n+1}} & \quad \frac{1}{2}(w'w + b^2) + \frac{C}{2} \sum_{i=1}^{m} \max(0, |A_i w + b - y_i| - \epsilon)^2
\end{aligned}
\]

This problem is a **strongly convex** minimization problem without any constrain.

The object function is **twice differentiable** thus we can use a fast **Newton-Armijo method** to solve this problem.
Nonlinear Smooth Support Vector \(\epsilon \)-insensitive Regression

\[\min_{(\alpha, b) \in \mathbb{R}^{m+1}} \frac{1}{2}(\alpha' \alpha + b^2) \]

\[+ \frac{C}{2} \sum_{i=1}^{m} \sum_{i=1}^{m} p_i^2 K(A_i, A) \alpha + b b - y_i y_i \beta_i^2 \]

- Nonlinear regression function depends on the data points with nonzero coefficients:

\[K(x', A') \alpha' + b = \sum_{\alpha_j \neq 0} \alpha_j K(A_j, x) + b = 0 \]
Nonlinear SVM: A Full Model

\[f(x) = \sum_{i=1}^{m} \alpha_i k(x, A_i) + b \]

- Nonlinear SVM uses a full representation for a classifier or regression function:
 - As many parameters \(\alpha_i \) as the data points
- Nonlinear SVM function is a linear combination of basis functions,
 \[\mathcal{B} = \{1\} \cup \{k(\cdot , x^i)\}_{i=1}^{m} \]
 - \(\mathcal{B} \) is an overcomplete dictionary of functions when \(m \) is large or approaching infinity
- Fitting data to an overcomplete full model may
 - Increase computational difficulties & model complexity
 - Need more CPU time and memory space
 - Be in danger of overfitting
Reduced SVM: A Compressed Model

It’s desirable to cut down the model complexity

- Reduced SVM randomly selects a small subset \bar{S} to generate the basis functions \bar{B}:
 \[\bar{S} = \{(\bar{x}^i, \bar{y}_i)| i = 1, \ldots, \bar{m}\} \subseteq S, \quad \bar{B} = \{1\} \cup \{k(\cdot, \bar{x}^i)\}_{i=1}^{\bar{m}} \]

- RSVM classifier is in the form
 \[f(x) = \sum_{i=1}^{\bar{m}} \bar{u}_i k(x, \bar{x}^i) + b \]

- The parameters are determined by fitting entire data
 \[
 \min_{\bar{u}, b, \xi \geq 0} \quad C \sum_{j=1}^{\bar{m}} \xi_j + \frac{1}{2} \left\| \bar{u} \right\|_2^2 \\
 \text{s.t.} \quad y_j \left(\sum_{i=1}^{\bar{m}} \bar{u}_i k(x^j, \bar{x}^i) + b \right) + \xi_j \geq 1, \forall j = 1, \ldots, m
 \]
Nonlinear SVM vs. RSVM

\[K(A, A') \in \mathbb{R}^{m \times m} \quad \text{vs.} \quad K(A, \bar{A}') \in \mathbb{R}^{\bar{m} \times \bar{m}} \]

Nonlinear SVM

\[
\begin{align*}
\min_{\alpha, b, \xi \geq 0} & \quad C \sum_{j=1}^{m} \xi_j + \frac{1}{2} \|\alpha\|_2^2 \\
\text{subject to} & \quad D(K(A, A')\alpha + 1b) + \xi \geq 1
\end{align*}
\]

where \(K(A, A')_{ij} = k(x^i, x^j) \)

RSVM

\[
\begin{align*}
\min_{\bar{u}, b, \xi \geq 0} & \quad C \sum_{j=1}^{m} \xi_j + \frac{1}{2} \|\bar{u}\|_2^2 \\
\text{subject to} & \quad D(K(A, \bar{A}')\bar{u} + 1b) + \xi \geq 1
\end{align*}
\]

where \(K(A, \bar{A}')_{ij} = k(x^i, \bar{x}^j) \)
A Nonlinear Kernel Application
Checkerboard Training Set: 1000 Points in R^2
Separate 486 Asterisks from 514 Dots
Conventional SVM Result on Checkerboard
Using 50 Randomly Selected Points Out of 1000

\[K(\overline{A}, \overline{A}') \in \mathbb{R}^{50 \times 50} \]
RSVM Result on Checkerboard
Using SAME 50 Random Points Out of 1000

\[K(A, \overline{A'}) \in R^{1000 \times 50} \]
481 Data Points in $R^2 \times R$

Noise: mean=0, $\sigma = 0.4$

Parameter: $C = 50$, $\gamma = 1$, $\varepsilon = 0.5$

Mean Absolute Error (MAE) of 49x49 mesh points: 0.1761

Training time: 9.61 sec.
Using Reduced Kernel: $K(A, \overline{A}') \in \mathbb{R}^{28900 \times 300}$

Noise: mean=0, $\sigma = 0.4$

Parameter $C = 10000$, $\gamma = 1$, $\epsilon = 0.2$

MAE of 49x49 mesh points: 0.0513

Training time: 22.58 sec.
Merits of RSVM
Compressed Model vs. Full Model

◆ Computation point of view:
 - Memory usage: Nonlinear SVM \(\sim O(m^2) \)
 Reduced SVM \(\sim O(m \times \overline{m}) \)
 - Time complexity: Nonlinear SVM \(\sim O(m^3) \)
 Reduced SVM \(\sim O(\overline{m}^3) \)

◆ Model complexity point of view:
 - Compressed model is much \textit{simpler} than full one
 - This may reduced the risk of overfitting

◆ Successfully applied to other kernel based algorithms
 - SVR, KFDA and Kernel canonical correction analysis
Why RSVM Works so Well?
An Algebraic Explanation

- The full kernel can be approximated by a low-rank approximation which is known as the Nyström approximation. That is,

\[K(A, A') \approx K(A, \overline{A}')K(\overline{A}, \overline{A}')^{-1}K(\overline{A}', \overline{A}) \]

- For a vector \(u \in \mathbb{R}^m \)

\[K(A, A')u \approx K(A, \overline{A}')K(\overline{A}, \overline{A}')^{-1}K(\overline{A}', \overline{A})u = \overline{u} = K(A, \overline{A}')u \]

- In RSVM, \(\overline{u} \) is directly determined by fitting the entire dataset
Spectral Analysis

\[K(A, A') \text{ vs. } K(A, \overline{A}') K(\overline{A}, \overline{A}')^{-1} K(\overline{A}', \overline{A}) \]

Image(2310, 116): Max-diff: 1.496, Rel-diff of Traces: 0.021
Statistical Optimality

Random selection is an optimal robust scheme

- Uniform random selection of reduced set to form the compressed model is an optimal robust scheme in terms of the following criteria:
 - Optimal sampling design for bases selection
 - It minimizes the model variance
 - (MinMax): Minimizes the maximal bias measure between the compressed and full models
Conclusions

- **SSVM**: A new formulation of support vector machines as a smooth unconstrained minimization problem
 - Can be solved by a fast Newton-Armijo algorithm
 - No optimization (LP, QP) package is needed

- **RSVM**: A new nonlinear method for massive datasets
 - Overcomes two main difficulties of nonlinear SVMs
 - Reduces the memory storage & computational time

- **Rectangular kernel**: novel idea for kernel-based Algs.
Thank You!