Distance-regular graphs, pseudo primitive idempotents, and the Terwilliger algebra

Paul Terwilliger Chih-wen Weng

June 13, 2002

Abstract

Let \(\Gamma \) denote a distance-regular graph with diameter \(D \geq 3 \), intersection numbers \(a_i, b_i, c_i \) and Bose-Mesner algebra \(\mathbf{M} \). For \(\theta \in \mathbb{C} \cup \infty \) we define a 1 dimensional subspace of \(\mathbf{M} \) which we call \(\mathbf{M}(\theta) \). If \(\theta \in \mathbb{C} \) then \(\mathbf{M}(\theta) \) consists of those \(Y \) in \(\mathbf{M} \) such that \((A-\theta I)Y \in \mathbb{C}A_D \), where \(A \) (resp. \(A_D \)) is the adjacency matrix (resp. \(D \)th distance matrix) of \(\Gamma \). If \(\theta = \infty \) then \(\mathbf{M}(\theta) = \mathbb{C}A_D \). By a pseudo primitive idempotent for \(\theta \) we mean a nonzero element of \(\mathbf{M}(\theta) \). We use these as follows. Let \(X \) denote the vertex set of \(\Gamma \) and fix \(x \in X \). Let \(\mathbf{T} \) denote the subalgebra of \(\text{Mat}_X(\mathbb{C}) \) generated by \(A, E_1^*, E_2^*, \ldots, E_D^* \), where \(E_i^* \) denotes the projection onto the \(i \)th subconstituent of \(\Gamma \) with respect to \(x \). \(\mathbf{T} \) is called the Terwilliger algebra. Let \(W \) denote an irreducible \(\mathbf{T} \)-module. By the endpoint of \(W \) we mean \(\min\{i|E_i^*W \neq 0\} \). \(W \) is called thin whenever \(\text{dim}(E_i^*W) \leq 1 \) for \(0 \leq i \leq D \). Let \(V = \mathbb{C}^X \) denote the standard \(\mathbf{T} \)-module. Fix \(0 \neq v \in E_1^*V \) with \(v \) orthogonal to the all 1’s vector. We define \((\mathbf{M};v) := \{ P \in \mathbf{M}|Pv \in E_2^*V \} \). We show the following are equivalent: (i) \(\text{dim}(\mathbf{M};v) \geq 2 \); (ii) \(v \) is contained in a thin irreducible \(\mathbf{T} \)-module with endpoint 1. Suppose (i), (ii) hold. We show \((\mathbf{M};v) \) has a basis \(J, E \) where \(J \) has all entries 1 and \(E \) is defined as follows. Let \(W \) denote the \(\mathbf{T} \)-module which satisfies (ii). Observe \(E_1^*W \) is an eigenspace for \(E_1^*AE_1^* \); let \(\eta \) denote the corresponding eigenvalue. Define \(\tilde{\eta} = -1 - b_1(1+\eta)^{-1} \) if \(\eta \neq -1 \) and \(\tilde{\eta} = \infty \) if \(\eta = -1 \). Then \(E \) is a pseudo primitive idempotent for \(\tilde{\eta} \).

Keywords: distance-regular graph, pseudo primitive idempotent, subconstituent algebra, Terwilliger algebra.

AMS Subject Classification: 05E30.
1 Introduction

Let Γ denote a distance-regular graph with diameter $D \geq 3$, intersection
numbers a_i, b_i, c_i, Bose-Mesner algebra M and path-length distance function ∂ (see section 2 for formal definitions). In order to state our main theorems we make a few comments. Let X denote the vertex set of Γ. Let $V = \mathbb{C}^X$ denote
the vector space over \mathbb{C} consisting of column vectors whose coordinates are
indexed by X and whose entries are in \mathbb{C}. We endow V with the Hermitean
inner product $\langle \cdot, \cdot \rangle$ satisfying $\langle u, v \rangle = u^\dagger v$ for all $u, v \in V$. For each $y \in X$ let \hat{y} denote the vector in V with a 1 in the y coordinate and 0 in all other
coordinates. We observe $\{ \hat{y} | y \in X \}$ is an orthonormal basis for V. Fix $x \in X$.
For $0 \leq i \leq D$ let E_i^* denote the diagonal matrix in $\text{Mat}_X(\mathbb{C})$ which has yy
entry 1 (resp. 0) whenever $\partial(x, y) = i$ (resp. $\partial(x, y) \neq i$). We observe E_i^*
acts on V as the projection onto the ith subconstituent of Γ with respect to x. For $0 \leq i \leq D$ define $s_i = \sum \hat{y}$, where the sum is over all vertices $y \in X$
such that $\partial(x, y) = i$. We observe $s_i \in E_i^*V$. Let v denote a nonzero vector
in E_i^*V which is orthogonal to s_1. We define

$$(M; v) := \{ P \in M \mid Pv \in E_D^*V \}.$$

We observe $(M; v)$ is a subspace of M. We consider the dimension of $(M; v)$.
We first observe $(M; v) \neq 0$. To see this, let J denote the matrix in $\text{Mat}_X(\mathbb{C})$
which has all entries 1. It is known J is contained in M [2, p. 64]. In fact
$J \in (M; v)$; the reason is $Jv = 0$ since v is orthogonal to s_1. Apparently
$(M; v)$ is nonzero so it has dimension at least 1. We now consider when
does $(M; v)$ have dimension at least 2? To answer this question we recall the
Terwilliger algebra. Let T denote the subalgebra of $\text{Mat}_X(\mathbb{C})$ generated by
$A, E_0^*, E_1^*, \ldots, E_D^*$, where A denotes the adjacency matrix of Γ. The algebra
T is known as the Terwilliger algebra (or subconstituent algebra) of Γ with
respect to x [19, 20, 21]. By a T-module we mean a subspace $W \subseteq V$ such
that $TW \subseteq W$. Let W denote a T-module. We say W is irreducible whenever $W \neq 0$ and W does not contain a T-module other than 0 and W. Let W
denote an irreducible T-module. By the endpoint of W we mean the minimal integer i ($0 \leq i \leq D$) such that $E_i^*W \neq 0$. We say W is thin whenever E_i^*W
has dimension at most 1 for $0 \leq i \leq D$. We now state our main theorem.

Theorem 1.1. Let v denote a nonzero vector in E_1^*V which is orthogonal to
s_1. Then the following (i), (ii) are equivalent.
(i) $(M; v)$ has dimension at least 2.

(ii) v is contained in a thin irreducible T-module with endpoint 1.

Suppose (i),(ii) hold above. Then $(M; v)$ has dimension exactly 2.

With reference to Theorem 1.1, suppose for the moment that (i), (ii) hold. We find a basis for $(M; v)$. To describe our basis we need some notation. Let $\theta_0 > \theta_1 > \cdots > \theta_D$ denote the distinct eigenvalues of A, and for $0 \leq i \leq D$ let E_i denote the primitive idempotent of M associated with θ_i. We recall E_i satisfies $(A - \theta_i I)E_i = 0$. We introduce a type of element in M which generalizes the E_0, E_1, \ldots, E_D. We call this type of element a pseudo primitive idempotent for Γ. In order to define the pseudo primitive idempotents, we first define for each $\theta \in \mathbb{C} \cup \infty$ a subspace of M which we call $M(\theta)$. For $\theta \in \mathbb{C}$, $M(\theta)$ consists of those elements Y of M such that $(A - \theta I)Y \in CA_D$, where A_D is the Dth distance matrix of Γ. We define $M(\infty) = CA_D$. We show $M(\theta)$ has dimension 1 for all $\theta \in \mathbb{C} \cup \infty$. Given distinct θ, θ' in $\mathbb{C} \cup \infty$, we show $M(\theta) \cap M(\theta') = 0$. For $0 \leq i \leq D$ we show $M(\theta_i) = CE_i$. Let $\theta \in \mathbb{C} \cup \infty$. By a pseudo primitive idempotent for θ, we mean a nonzero element of $M(\theta)$. Before proceeding we define an involution on $\mathbb{C} \cup \infty$. For $\eta \in \mathbb{C} \cup \infty$ we define

$$\tilde{\eta} = \begin{cases}
\infty & \text{if } \eta = -1, \\
-1 & \text{if } \eta = \infty, \\
-1 - \frac{\eta}{\eta + 1} & \text{if } \eta \neq -1, \eta \neq \infty.
\end{cases}$$

We observe $\tilde{\eta} = \eta$ for $\eta \in \mathbb{C} \cup \infty$. Let W denote a thin irreducible T-module with endpoint 1. Observe $E_1^\ast W$ is a one dimensional eigenspace for $E_1^\ast AE_1^\ast$; let η denote the corresponding eigenvalue. We call η the local eigenvalue of W.

Theorem 1.2. Let v denote a nonzero vector in $E_1^\ast V$ which is orthogonal to s_1. Suppose v satisfies the equivalent conditions (i), (ii) in Theorem 1.1. Let W denote the T-module from part (ii) of that theorem and let η denote the local eigenvalue for W. Let E denote a pseudo primitive idempotent for $\tilde{\eta}$. Then J, E form a basis for $(M; v)$.

We comment on when the scalar $\tilde{\eta}$ from Theorem 1.2 is an eigenvalue of Γ. Let W denote a thin irreducible T-module with endpoint 1 and local
eigenvalue η. It is known $\tilde{\theta}_1 \leq \eta \leq \tilde{\theta}_D$ [18, Theorem 1]. If $\eta = \tilde{\theta}_1$ then $\tilde{\eta} = \theta_1$. If $\eta = \tilde{\theta}_D$ then $\tilde{\eta} = \theta_D$. We show that if $\tilde{\theta}_1 < \eta < \tilde{\theta}_D$ then $\tilde{\eta}$ is not an eigenvalue of Γ.

The paper is organized as follows. In section 2 we give some preliminaries on distance-regular graphs. In section 3 and section 4 we review some basic results on the Terwilliger algebra and its modules. We prove Theorem 1.1 in section 5. In section 6 we discuss pseudo primitive idempotents. In section 7 we discuss local eigenvalues. We prove Theorem 1.2 in section 8.

2 Preliminaries

In this section we review some definitions and basic concepts. See the books by Bannai and Ito [2] or Brouwer, Cohen, and Neumaier [4] for more background information.

Let X denote a nonempty finite set. Let $\text{Mat}_X(\mathbb{C})$ denote the \mathbb{C}-algebra consisting of all matrices whose rows and columns are indexed by X and whose entries are in \mathbb{C}. Let $V = \mathbb{C}^X$ denote the vector space over \mathbb{C} consisting of column vectors whose coordinates are indexed by X and whose entries are in \mathbb{C}. We observe $\text{Mat}_X(\mathbb{C})$ acts on V by left multiplication. We endow V with the Hermitean inner product $\langle \cdot, \cdot \rangle$ which satisfies $\langle u, v \rangle = u^t \overline{v}$ for all $u, v \in V$, where t denotes transpose and $-$ denotes complex conjugation. For all $y \in X$, let \hat{y} denote the element of V with a 1 in the y coordinate and 0 in all other coordinates. We observe $\{ \hat{y} \mid y \in X \}$ is an orthonormal basis for V.

Let $\Gamma = (X, R)$ denote a finite, undirected, connected graph without loops or multiple edges, with vertex set X, edge set R, path-length distance function ϑ and diameter $D := \max\{\vartheta(x, y) \mid x, y \in X\}$. We say Γ is distance-regular whenever for all integers h, i, j ($0 \leq h, i, j \leq D$) and for all $x, y \in X$ with $\vartheta(x, y) = h$, the number

$$p_{ij}^h = |\{z \in X \mid \vartheta(x, z) = i, \vartheta(z, y) = j \}|$$

is independent of x and y. The integers p_{ij}^h are called the intersection numbers for Γ. Observe $p_{ij}^h = p_{ji}^h$ ($0 \leq h, i, j \leq D$). We abbreviate $c_i := p_{i1}^0$ ($1 \leq i \leq D$), $a_i := p_{ii}^1$ ($0 \leq i \leq D$), $b_i := p_{i+1}^i$ ($0 \leq i \leq D - 1$), $k_i := p_{ii}^D$.

4
\((0 \leq i \leq D)\), and for convenience we set \(c_0 := 0\) and \(b_D := 0\). Note that \(b_{i-1}c_i \neq 0\) \((1 \leq i \leq D)\).

For the rest of this paper we assume \(\Gamma = (X, R)\) is distance-regular with diameter \(D \geq 3\). By (2.1) and the triangle inequality,

\[
\begin{align*}
 p_{h}^{i} &= 0 \quad \text{if } |h - i| > 1 \quad (0 \leq h, i \leq D), \quad (2.2) \\
 p_{i}^{j} &= 0 \quad \text{if } |i - j| > 1 \quad (0 \leq i, j \leq D). \quad (2.3)
\end{align*}
\]

Observe \(\Gamma\) is regular with valency \(k = k_1 = b_0\), and that \(k = c_i + a_i + b_i\) for \(0 \leq i \leq D\). By [4, p. 127] we have

\[
k_{i-1}b_{i-1} = k_{i}c_{i} \quad (1 \leq i \leq D). \quad (2.4)
\]

We recall the Bose-Mesner algebra of \(\Gamma\). For \(0 \leq i \leq D\) let \(A_i\) denote the matrix in \(\text{Mat}_X(\mathbb{C})\) which has \(yz\) entry

\[
(A_i)_{yz} = \begin{cases}
1 & \text{if } \partial(y, z) = i \\
0 & \text{if } \partial(y, z) \neq i
\end{cases} \quad (y, z \in X).
\]

We call \(A_i\) the \(i\)th \textit{distance matrix} of \(\Gamma\). For notational convenience we define \(A_i = 0\) for \(i < 0\) and \(i > D\). Observe (ai) \(A_0 = I\); (aii) \(\sum_{i=0}^{D} A_i = J\); (aiii) \(\overline{A_i} = A_i\) \((0 \leq i \leq D)\); (aiv) \(A_i^{D} = A_i\) \((0 \leq i \leq D)\); (av) \(A_i A_j = \sum_{h=0}^{D} p_{i}^{h} A_{h}\) \((0 \leq i, j \leq D)\), where \(I\) denotes the identity matrix and \(J\) denotes the all ones matrix. We abbreviate \(A := A_1\) and call this the \textit{adjacency matrix} of \(\Gamma\). Let \(\mathbf{M}\) denote the subalgebra of \(\text{Mat}_X(\mathbb{C})\) generated by \(A\). Using (ai)–(av) we find \(A_0, A_1, \ldots, A_D\) form a basis of \(\mathbf{M}\). We call \(\mathbf{M}\) the \textit{Bose-Mesner algebra} of \(\Gamma\). By [2, p. 59, p. 64], \(\mathbf{M}\) has a second basis \(E_0, E_1, \ldots, E_D\) such that (ei) \(E_0 = |X|^{-1} J\); (eii) \(\sum_{i=0}^{D} E_i = I\); (eiii) \(E_i^{D} = E_i\) \((0 \leq i \leq D)\); (eiv) \(E_i E_j = \delta_{ij} E_i\) \((0 \leq i, j \leq D)\). We call \(E_0, E_1, \ldots, E_D\) the \textit{primitive idempotents} for \(\Gamma\). Since \(E_0, E_1, \ldots, E_D\) form a basis for \(\mathbf{M}\) there exists complex scalars \(\theta_0, \theta_1, \ldots, \theta_D\) such that \(A = \sum_{i=0}^{D} \theta_i E_i\). By this and (ev) we find \(AE_i = \theta_i E_i\) for \(0 \leq i \leq D\). Using (aiii) and (eii) we find each of \(\theta_0, \theta_1, \ldots, \theta_D\) is a real number. Observe \(\theta_0, \theta_1, \ldots, \theta_D\) are mutually distinct since \(A\) generates \(\mathbf{M}\). By [2, p.197] we have \(\theta_0 = k\) and \(-k \leq \theta_i \leq k\) for \(0 \leq i \leq D\). Throughout this paper, we assume \(E_0, E_1, \ldots, E_D\) are indexed so that \(\theta_0 > \theta_1 > \cdots > \theta_D\). We call \(\theta_i\) the \(i\)th \textit{eigenvalue} of \(\Gamma\).
We recall some polynomials. To motivate these we make a comment. Setting $i = 1$ in (4av) and using (2.2),
\begin{equation}
AA_j = b_{j-1}A_{j-1} + a_jA_j + c_{j+1}A_{j+1} \quad (0 \leq j \leq D - 1),
\end{equation}
where $b_{-1} = 0$. Let λ denote an indeterminate and let $\mathbb{C}[\lambda]$ denote the \mathbb{C}-algebra consisting of all polynomials in λ which have coefficients in \mathbb{C}. Let f_0, f_1, \cdots, f_D denote the polynomials in $\mathbb{C}[\lambda]$ which satisfy $f_0 = 1$ and
\begin{equation}
\lambda f_j = b_{j-1}f_{j-1} + a_jf_j + c_{j+1}f_{j+1} \quad (0 \leq j \leq D - 1),
\end{equation}
where $f_{-1} = 0$. For $0 \leq j \leq D$ the degree of f_j is exactly j. Comparing (2.5) and (2.6) we find $A_j = f_j(A)$.

3 The Terwilliger algebra

For the remainder of this paper we fix $x \in X$. For $0 \leq i \leq D$ let $E_i^* = E_i^*(x)$ denote the diagonal matrix in $\text{Mat}_X(\mathbb{C})$ which has yy entry
\begin{equation}
(E_i^*)_{yy} = \begin{cases}
1 & \text{if } \partial(x, y) = i \\
0 & \text{if } \partial(x, y) \neq i
\end{cases} \quad (y \in X).
\end{equation}
We call E_i^* the ith dual idempotent of Γ with respect to x. For convenience we define $E_i^* = 0$ for $i < 0$ and $i > D$. We observe (i) $\sum_{i=0}^{D} E_i^* = I$; (ii) $E_i^* = E_i^*$ (0 $\leq i \leq D$), (iii) $E_i^* E_j^* = E_j^*$ (0 $\leq i \leq D$), (iv) $E_i^* E_j^* = \delta_{ij} E_i^*$ (0 $\leq i, j \leq D$). The E_i^* have the following interpretation. Using (3.1) we find
\begin{equation*}
E_i^* V = \text{span}\{y|y \in X, \ \partial(x, y) = i\} \quad (0 \leq i \leq D).
\end{equation*}
By this and since $\{y|y \in X\}$ is an orthonormal basis for V,
\begin{equation*}
V = E_0^* V + E_1^* V + \cdots + E_D^* V \quad \text{(orthogonal direct sum)}.
\end{equation*}
For $0 \leq i \leq D$, E_i^* acts on V as the projection onto $E_i^* V$. We call $E_i^* V$ the ith subconstituent of Γ with respect to x. For $0 \leq i \leq D$ we define $s_i = \sum \hat{y}$, where the sum is over all vertices $y \in X$ such that $\partial(x, y) = i$. We observe $s_i \in E_i^* V$. Let $T = T(x)$ denote the subalgebra of $\text{Mat}_X(\mathbb{C})$ generated by A, E_0^*, E_1^*, \cdots, E_D^*. The algebra T is semisimple but not commutative in general [19, Lemma 3.4]. We call T the Terwilliger algebra.
(or subconstituent algebra) of \(\Gamma \) with respect to \(x \). We refer the reader to [1, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24] for more information on the Terwilliger algebra. We will use the following facts. Pick any integers \(h, i, j \) (\(0 \leq h, i, j \leq D \)). By [19, Lemma 3.2] we have
\[E_j^* A_h E_i^* = 0 \] if and only if \(p_{ij}^h = 0 \). By this and (2.2), (2.3) we find
\[
E_i^* A_h E_i^* = \begin{cases} 0 & \text{if } |h - i| > 1 \quad (0 \leq h, i \leq D), \\ E_i^* A E_j^* = 0 & \text{if } |i - j| > 1 \quad (0 \leq i, j \leq D). \end{cases}
\]

Lemma 3.1. The following (i), (ii) hold for \(0 \leq i \leq D \).

(i) \(E_i^* J E_1^* = E_i^* A_{i-1} E_i^* + E_i^* A_i E_i^* + E_i^* A_{i+1} E_i^* \).

(ii) \(A_i E_i^* = E_{i-1}^* A_i E_i^* + E_{i}^* A_i E_i^* + E_{i+1}^* A_i E_i^* \).

Proof. (i) Recall \(J = \sum_{h=0}^D A_h \) so \(E_i^* J E_1^* = \sum_{h=0}^D E_i^* A_h E_1^* \). Evaluating this using (3.2) we obtain the result.

(ii) Recall \(J = \sum_{h=0}^D E_h^* \) so \(A_i E_i^* = \sum_{h=0}^D E_h^* A_i E_1^* \). Evaluating this using (3.2) we obtain the result. \(\square \)

Lemma 3.2. For \(0 \leq i \leq D - 1 \) we have
\[
E_{i+1}^* A_i E_1^* - E_i^* A_{i+1} E_1^* = \sum_{h=0}^i A_h E_1^* - \sum_{h=0}^i E_h^* J E_1^*.
\]

Proof. Evaluate each term in the right-hand side of (3.4) using Lemma 3.1 and simplify the result. \(\square \)

Corollary 3.3. Let \(v \) denote a vector in \(E_1^* V \) which is orthogonal to \(s_1 \). Then for \(0 \leq i \leq D - 1 \) we have
\[
E_{i+1}^* A_i v - E_i^* A_{i+1} v = \sum_{h=0}^i A_h v.
\]

Moreover \(E_0^* A v = 0 \).

Proof. To obtain (3.5) apply all terms of (3.4) to \(v \) and evaluate the result using \(E_1^* v = v \) and \(J v = 0 \). Setting \(i = 0 \) in (3.5) we find \(v - E_0^* A v = v \) so \(E_0^* A v = 0 \). \(\square \)

Lemma 3.4. The following (i), (ii) hold for \(1 \leq i \leq D - 1 \).
(i) \(E_{i+1}^* AE_i^* A_{i-1} E_i^* = c_i E_{i+1}^* A_i E_i^* \)

(ii) \(E_{i-1}^* AE_i^* A_{i+1} E_i^* = b_i E_{i-1}^* A_i E_i^* \).

Proof. (i) For all \(y, z \in X \), on either side the \(yz \) entry is equal to \(c_i \) if \(\partial(x, y) = i + 1, \partial(x, z) = 1, \partial(y, z) = i \), and zero otherwise.

(ii) For all \(y, z \in X \), on either side the \(yz \) entry is equal to \(b_i \) if \(\partial(x, y) = i - 1, \partial(x, z) = 1, \partial(y, z) = i \), and zero otherwise. \(\square \)

Corollary 3.5. Let \(v \) denote a vector in \(E_i^* V \). Then the following (i), (ii) hold for \(1 \leq i \leq D - 1 \).

(i) Suppose \(E_i^* A_{i-1} v = 0. \) Then \(E_{i+1}^* A_i v = 0. \)

(ii) Suppose \(E_i^* A_{i+1} v = 0. \) Then \(E_{i-1}^* A_i v = 0. \)

Proof. In Lemma 3.4(i),(ii) apply both sides to \(v \) and use \(E_i^* v = v. \) \(\square \)

4 The modules of the Terwilliger algebra

Let \(T \) denote the Terwilliger algebra of \(\Gamma \) with respect to \(x \). By a \(T \)-module we mean a subspace \(W \subseteq V \) such that \(BW \subseteq W \) for all \(B \in T \). Let \(W \) denote a \(T \)-module. Then \(W \) is said to be irreducible whenever \(W \) is nonzero and \(W \) contains no \(T \)-modules other than 0 and \(W \). Let \(W \) denote an irreducible \(T \)-module. Then \(W \) is the orthogonal direct sum of the nonzero spaces among \(E_0^* W, E_1^* W, \ldots, E_D^* W \) [19, Lemma 3.4]. By the endpoint of \(W \) we mean \(\min \{0 \leq i \leq D, E_i^* W \neq 0 \} \). By the diameter of \(W \) we mean \(\lfloor \{0 \leq i \leq D, E_i^* W \neq 0 \} \rfloor - 1 \). We say \(W \) is thin whenever \(E_i^* W \) has dimension at most 1 for \(0 \leq i \leq D \). There exists a unique irreducible \(T \)-module which has endpoint 0 [10, Prop. 8.4]. This module is called \(V_0 \). For \(0 \leq i \leq D \) the vector \(s_i \) is a basis for \(E_i^* V_0 \) [19, Lemma 3.6]. Therefore \(V_0 \) is thin with diameter \(D \). The module \(V_0 \) is orthogonal to each irreducible \(T \)-module other than \(V_0 \) [6, Lem. 3.3]. For more information on \(V_0 \) see [6, 10]. We will use the following facts.

Lemma 4.1. [19, Lemma 3.9] Let \(W \) denote an irreducible \(T \)-module with endpoint \(r \) and diameter \(d \). Then

\[E_i^* W \neq 0 \quad (r \leq i \leq r + d). \] (4.1)
Moreover
\[E_i^* A E_j^* W \neq 0 \quad \text{if} \quad |i - j| = 1, \quad (r \leq i, j \leq r + d). \quad (4.2) \]

Lemma 4.2. [6, Lemma 3.4] Let \(W \) denote a \(T \)-module. Suppose there exists an integer \(i \) (0 \leq i \leq D) such that \(\dim(E_i^* W) = 1 \) and \(W = TE_i^* W \). Then \(W \) is irreducible.

Theorem 4.3. [12, Lemma 10.1], [22, Theorem 11.1] Let \(W \) denote a thin irreducible \(T \)-module with endpoint one, and let \(v \) denote a nonzero vector in \(E_1^* W \). Then \(W = M v \). Moreover the diameter of \(W \) is \(D - 2 \) or \(D - 1 \).

Theorem 4.4. [12, Corollary 8.6, Theorem 9.8] Let \(v \) denote a nonzero vector in \(E_1^* V \) which is orthogonal to \(s_1 \). Then the dimension of \(M v \) is \(D - 1 \) or \(D \). Suppose the dimension of \(M v \) is \(D - 1 \). Then \(M v \) is a thin irreducible \(T \)-module with endpoint 1 and diameter \(D - 2 \).

5 The proof of Theorem 1.1

We now give a proof of Theorem 1.1.

Proof. (i) \(\implies \) (ii) We show \(M v \) is a thin irreducible \(T \)-module with endpoint 1. By Theorem 4.4 the dimension of \(M v \) is either \(D - 1 \) or \(D \). First assume the dimension of \(M v \) is equal to \(D - 1 \). Then by Theorem 4.4, \(M v \) is a thin irreducible \(T \)-module with endpoint 1. Next assume the dimension of \(M v \) is equal to \(D \). The space \((M; v) \) contains \(J \) and has dimension at least 2, so there exists \(P \in (M; v) \) such that \(J, P \) are linearly independent. From the construction \(P v \in E_D^* V \). Observe \(P v \neq 0 \); otherwise the dimension of \(M v \) is not \(D \). The elements \(A_0, A_1, \ldots, A_D \) form a basis for \(M \). Therefore the elements \(A_0 + A_1 + \cdots + A_i \) (0 \leq i \leq D) form a basis for \(M \). Apparently there exist complex scalars \(\rho_i \) (0 \leq i \leq D) such that \(P = \sum_{i=0}^D \rho_i (A_0 + A_1 + \cdots + A_i) \). Recall \(J = \sum_{h=0}^D A_h \). Subtracting a scalar multiple of \(J \) from \(P \) if necessary, we may assume \(\rho_D = 0 \). We consider \(P v \) from two points of view. On one hand we have \(P v \in E_D^* V \). Therefore \(E_D^* P v = P v \) and \(E_i^* P v = 0 \) for 0 \leq i \leq D - 1. On the other hand using (3.5),

\[
P v = \sum_{i=0}^{D-1} \rho_i (E_{i+1}^* A_i v - E_i^* A_{i+1} v).
\]
Combining these two points of view we find $Pv = \rho_{D-1}E_D^*A_{D-1}v$, $\rho_0E_0^*Av = 0$, and

$$\rho_{i-1}E_i^*A_{i-1}v = \rho_iE_i^*A_{i+1}v \quad (1 \leq i \leq D-1). \quad (5.1)$$

We mentioned $Pv \neq 0$; therefore $\rho_{D-1} \neq 0$ and $E_D^*A_{D-1}v \neq 0$. Applying Corollary 3.5(i) we find $E_i^*A_{i-1}v \neq 0$ for $1 \leq i \leq D$. We claim $E_i^*A_{i+1}v$ and $E_i^*A_{i-1}v$ are linearly dependent for $1 \leq i \leq D - 1$. Suppose there exists an integer i ($1 \leq i \leq D - 1$) such that $E_i^*A_{i+1}v$ and $E_i^*A_{i-1}v$ are linearly independent. Then $E_i^*A_{i+1}v \neq 0$. Applying Corollary 3.5(ii) we find $E_j^*A_{j+1}v \neq 0$ for $i \leq j \leq D - 1$. Using these facts and (5.1) we routinely find $\rho_j = 0$ for $i \leq j \leq D - 1$. In particular $\rho_{D-1} = 0$ for a contradiction. We have now shown $E_i^*A_{i+1}v$ and $E_i^*A_{i-1}v$ are linearly dependent for $1 \leq i \leq D - 1$. Observe Mv is spanned by the vectors

$$(A_0 + A_1 + \cdots + A_i)v \quad (0 \leq i \leq D-1).$$

By Corollary 3.3 and our above comments we find Mv is contained in the span of

$$(0 \leq i \leq D - 1).$$

Since Mv has dimension D we find Mv is equal to the span of (5.2). Apparently Mv is a T-module. Moreover Mv is irreducible by Lemma 4.2. Apparently Mv is thin with endpoint 1.

$((iii) \implies (i))$ We show $(M;v)$ has dimension at least 2. Since $J \in (M;v)$ it suffices to exhibit an element $P \in (M;v)$ such that J, P are linearly independent. Let W denote a thin irreducible T-module which has endpoint 1 and contains v. By Theorem 4.3 we have $W = Mv$; also by Theorem 4.3 the diameter of W is $D - 2$ or $D - 1$. First suppose W has diameter $D - 2$. Then W has dimension $D - 1$. Consider the map $\sigma : M \to V$ which sends each element P to Pv. The image of M under σ is Mv and the kernel of σ is contained in $(M;v)$. The image has dimension $D - 1$ and M has dimension $D + 1$ so the kernel has dimension 2. It follows $(M;v)$ has dimension at least 2. Next assume W has diameter $D - 1$. In this case $E_D^*W \neq 0$ by (4.1). Since $W = Mv$ there exists $P \in M$ such that Pv is a nonzero element in E_D^*W. Now $P \in (M;v)$. Observe P, J are linearly independent since $Pv \neq 0$ and $Jv = 0$. Apparently the dimension of $(M;v)$ is at least 2.
Now assume (i), (ii) hold. We show the dimension of \((M; v)\) is 2. To do this, we show the dimension of \((M; v)\) is at most 2. Let \(H\) denote the subspace of \(M\) spanned by \(A_0, A_1, \ldots, A_{D-2}\). We show \(H\) has 0 intersection with \((M; v)\). By Theorem 4.4 the dimension of \(Mv\) is at least \(D-1\). Recall \(M\) is generated by \(A\) so the vectors \(A_i v\) \((0 \leq i \leq D-2)\) are linearly independent. Apparently the vectors \(A_i v\) \((0 \leq i \leq D-2)\) are linearly independent. For \(0 \leq i \leq D-2\) the vector \(A_i v\) is contained in \(\sum_{h=0}^{D-1} E_h^* V\) by Lemma 3.1(ii); therefore \(A_i v\) is orthogonal to \(E_h^* V\). We now see the vectors \(A_i v\) \((0 \leq i \leq D-2)\) are linearly independent and orthogonal to \(E_h^* V\). It follows \(H\) has 0 intersection with \((M; v)\). Observe \(H\) is codimension 2 in \(M\) so the dimension of \((M; v)\) is at most 2. We conclude the dimension of \((M; v)\) is 2. \(\square\)

6 Pseudo primitive idempotents

In this section we introduce the notion of a pseudo primitive idempotent.

Definition 6.1. For each \(\theta \in \mathbb{C} \cup \infty\) we define a subspace of \(M\) which we call \(M(\theta)\). For \(\theta \in \mathbb{C}\), \(M(\theta)\) consists of those elements \(Y\) of \(M\) such that \((A - \theta I)Y \in \mathbb{C}A_D\). We define \(M(\infty) = \mathbb{C}A_D\).

With reference to Definition 6.1, we will show each \(M(\theta)\) has dimension 1. To establish this we display a basis for \(M(\theta)\). We will use the following result.

Lemma 6.2. Let \(Y\) denote an element of \(M\) and write \(Y = \sum_{i=0}^{D} \rho_i A_i\). Let \(\theta\) denote a complex number. Then the following (i), (ii) are equivalent.

(i) \((A - \theta I)Y \in \mathbb{C}A_D\).

(ii) \(\rho_i = \rho_0 f_i(\theta) k_i^{-1}\) for \(0 \leq i \leq D\).

Proof. Evaluating \((A - \theta I)Y\) using \(Y = \sum_{i=0}^{D} \rho_i A_i\) and simplifying the result using (2.5) we obtain

\[(A - \theta I)Y = \sum_{i=0}^{D} A_i(c_i \rho_{i-1} + a_i \rho_i + b_i \rho_{i+1} - \theta \rho_i),\]

where \(\rho_{-1} = 0\) and \(\rho_{D+1} = 0\). Observe by (2.4), (2.6) that \(\rho_i = \rho_0 f_i(\theta) k_i^{-1}\) for \(0 \leq i \leq D\) if and only if \(c_i \rho_{i-1} + a_i \rho_i + b_i \rho_{i+1} = \theta \rho_i\) for \(0 \leq i \leq D - 1\). The result follows. \(\square\)
Corollary 6.3. For $\theta \in \mathbb{C}$ the following is a basis for $M(\theta)$.

$$\sum_{i=0}^{D} f_i(\theta)k_i^{-1}A_i.$$ \hspace{1cm} (6.1)

Proof. Immediate from Lemma 6.2. \hfill \Box

Corollary 6.4. The space $M(\theta)$ has dimension 1 for all $\theta \in \mathbb{C} \cup \infty$.

Proof. Suppose $\theta = \infty$. Then $M(\theta)$ has basis A_D and therefore has dimension 1. Suppose $\theta \in \mathbb{C}$. Then $M(\theta)$ has dimension 1 by Corollary 6.3. \hfill \Box

Lemma 6.5. Let θ and θ' denote distinct elements of $\mathbb{C} \cup \infty$. Then $M(\theta) \cap M(\theta') = 0$.

Proof. This is a routine consequence of Corollary 6.3 and the fact that $M(\infty) = CA_D$. \hfill \Box

Corollary 6.6. For $0 \leq i \leq D$ we have $M(\theta_i) = CE_i$.

Proof. Observe $(A - \theta_i I)E_i = 0$ so $E_i \in M(\theta_i)$. The space $M(\theta_i)$ has dimension 1 by Corollary 6.4 and E_i is nonzero so E_i is a basis for $M(\theta_i)$. \hfill \Box

Remark 6.7. [2, p. 63] For $0 \leq j \leq D$ we have

$$E_j = m_j |X|^{-1} \sum_{i=0}^{D} f_i(\theta_j)k_i^{-1}A_i,$$

where m_j denotes the rank of E_j.

Definition 6.8. Let $\theta \in \mathbb{C} \cup \infty$. By a \textit{pseudo primitive idempotent} for θ we mean a nonzero element of $M(\theta)$, where $M(\theta)$ is from Definition 6.1.

7 The local eigenvalues

Definition 7.1. Define a function $\tilde{\eta} : \mathbb{C} \cup \infty \rightarrow \mathbb{C} \cup \infty$ by

$$\tilde{\eta} = \begin{cases} \infty & \text{if } \eta = -1, \\
-1 & \text{if } \eta = \infty, \\
-1 - \frac{b_1}{1+\eta} & \text{if } \eta \neq -1, \eta \neq \infty. \end{cases}$$

Observe $\tilde{\eta} = \eta$ for all $\eta \in \mathbb{C} \cup \infty$.

12
Let \(v \) denote a nonzero vector in \(E^*_1 V \) which is orthogonal to \(s_1 \). Assume \(v \) is an eigenvector for \(E^*_1 AE^*_1 \) and let \(\eta \) denote the corresponding eigenvalue. We recall a few facts concerning \(\eta \) and \(\tilde{\eta} \). We have \(\tilde{\theta}_1 \leq \eta \leq \tilde{\theta}_D \) [18, Theorem 1].

If \(\eta = \tilde{\theta}_1 \) then \(\tilde{\eta} = \theta_1 \). If \(\eta = \tilde{\theta}_D \) then \(\tilde{\eta} = \theta_D \). We have \(\theta_D < -1 < \theta_1 \) by [18, Lemma 3] so \(\tilde{\theta}_1 < -1 < \tilde{\theta}_D \). If \(\tilde{\theta}_1 < \eta < -1 \) then \(\theta_1 < \tilde{\eta} \). If \(-1 < \eta < \tilde{\theta}_D \) then \(\tilde{\eta} < \theta_D \). We will show that if \(\tilde{\theta}_1 < \eta < \tilde{\theta}_D \) then \(\tilde{\eta} \) is not an eigenvalue of \(\Gamma \).

Given the above inequalities, to prove this it suffices to prove the following result.

Proposition 7.2. Let \(v \) denote a nonzero vector in \(E^*_1 V \). Assume \(v \) is an eigenvector for \(E^*_1 AE^*_1 \) and let \(\eta \) denote the corresponding eigenvalue. Then \(\tilde{\eta} \neq k \).

Proof. Suppose \(\tilde{\eta} = k \). Then \(\eta = \tilde{k} \) so by Definition 7.1,

\[
\eta = -1 - \frac{b_1}{k + 1}.
\]

By this and since \(b_1 < k \) we see \(\eta \) is a rational number such that \(-2 < \eta < -1\). In particular \(\eta \) is not an integer. Observe \(\eta \) is an eigenvalue of the subgraph of \(\Gamma \) induced on the set of vertices adjacent \(x \); therefore \(\eta \) is an algebraic integer. A rational algebraic integer is an integer so we have a contradiction. We conclude \(\tilde{\eta} \neq k \). \(\square \)

Corollary 7.3. Let \(v \) denote a nonzero vector in \(E^*_1 V \) which is orthogonal to \(s_1 \). Assume \(v \) is an eigenvector for \(E^*_1 AE^*_1 \) and let \(\eta \) denote the corresponding eigenvalue. Suppose \(\tilde{\theta}_1 < \eta < \tilde{\theta}_D \). Then \(\tilde{\eta} \) is not an eigenvalue of \(\Gamma \).

8 The proof of Theorem 1.2

We now give a proof of Theorem 1.2.

Proof. We first show \(E \) is contained in \((M; v)\). To do this we show \(Ev \in E^*_D V \). First suppose \(\eta \neq -1 \). Then \(\tilde{\eta} \in \mathbb{C} \) by Definition 7.1. By Definition 6.1 there exists \(\epsilon \in \mathbb{C} \) such that \((A - \tilde{\eta}I)E = \epsilon A_D \). By this and Lemma 3.1(ii),

\[
AEv = \tilde{\eta}Ev + \epsilon A_D v \\
\in \mathbb{C}Ev + E^*_D W + E^*_D W.
\]

(8.1)

13
In order to show $Ev \in E_1^*V$ we show $E_i^*Ev = 0$ for $0 \leq i \leq D - 1$. Observe $E_0^*Ev = 0$ since $E_0^*Ev \in E_0^*W$ and W has endpoint 1. We show $E_1^*Ev = 0$. By Corollary 6.3 there exists a nonzero $m \in \mathbb{C}$ such that

$$E = m \sum_{h=0}^{D} f_h(\bar{\eta})k_h^{-1}A_h.$$

Let us abbreviate

$$\rho_h = m f_h(\bar{\eta})k_h^{-1} \quad (0 \leq h \leq D),$$

so that $E = \sum_{h=0}^{D} \rho_h A_h$. By this and (3.2) we find $E_1^*E_1^* = \sum_{h=0}^{2} \rho_h E_1^*A_h E_1^*$. Applying this to v we find

$$E_1^*Ev = \sum_{h=0}^{2} \rho_h E_1^*A_h v.$$

Setting $i = 1$ in Lemma 3.1(i), applying each term to v, and using $Jv = 0$ we find

$$0 = \sum_{h=0}^{2} E_1^*A_h v.$$

By (8.3), (8.4), and since $E_1^*Av = \eta v$ we find $E_1^*Ev = \gamma v$ where $\gamma = \rho_0 - \rho_2 + \eta(\rho_1 - \rho_2)$. Evaluating γ using (2.6), (8.2), and Definition 7.1 we routinely find $\gamma = 0$. Apparently $E_1^*Ev = 0$. We now show $E_i^*Ev = 0$ for $2 \leq i \leq D - 1$. Suppose there exists an integer j ($2 \leq j \leq D - 1$) such that $E_j^*Ev \neq 0$. We choose j minimal so that

$$E_j^*Ev = 0 \quad (0 \leq i \leq j - 1).$$

Combining this with (8.1) we find

$$E_i^*AEv = 0 \quad (0 \leq i \leq j - 1).$$

Since W is thin and since $E_j^*Ev \neq 0$ we find E_j^*Ev is a basis for E_j^*W. Apparently $E_{j-1}^*AE_j^*Ev$ spans $E_{j-1}^*AE_j^*W$. The space $E_{j-1}^*AE_j^*W$ is nonzero by (4.2) and since the diameter of W is at least $D - 2$. Therefore $E_{j-1}^*AE_j^*Ev \neq 0$. We may now argue

$$E_{j-1}^*AEv = \sum_{i=0}^{D} E_{j-1}^*AE_i^*Ev$$

$$= E_{j-1}^*AE_j^*Ev \quad \text{by (3.3), (8.5)}$$

$$\neq 0$$

14
which contradicts (8.6). We conclude $E^*_i Ev = 0$ for $2 \leq i \leq D - 1$. We have now shown $E^*_i Ev = 0$ for $0 \leq i \leq D - 1$ so $Ev \in E_D^* V$ in the case $\eta \neq -1$. Next suppose $\eta = -1$, so that $\tilde{\eta} = \infty$. By Definition 6.1 there exists a nonzero $t \in \mathbb{C}$ such that $E = tA_D$. In order to show $Ev \in E_D^* V$ we show $A_D v \in E_D^* V$. Since $A_D v$ is contained in $E_{D-1}^* V + E_D^* V$ by Lemma 3.1(ii), it suffices to show $E_{D-1}^* A_D v = 0$. To do this it is convenient to prove a bit more, that $E_i^* A_{i+1} v = 0$ for $1 \leq i \leq D - 1$. We prove this by induction on i. First assume $i = 1$. Setting $i = 1$ in Lemma 3.1(i), applying each term to v and using $Jv = 0$, $E_1^* A v = -v$, we obtain $E_1^* A_2 v = 0$. Next suppose $2 \leq i \leq D - 1$ and assume by induction that $E_{i-1}^* A_i v = 0$. We show $E_i^* A_{i+1} v = 0$. To do this we assume $E_i^* A_{i+1} v \neq 0$ and get a contradiction. Note that $E_i^* A_{i+1} v$ spans $E_i^* W$ since W is thin. Then $E_{i-1}^* AE_i^* A_{i+1} v \neq 0$ by (4.2). But $E_{i-1}^* AE_i^* A_{i+1} v = b_i E_{i-1}^* A_i v$ by Lemma 3.4(ii). Of course $b_i \neq 0$ so $E_{i-1}^* A_i v \neq 0$, a contradiction. Therefore $E_i^* A_{i+1} v = 0$. We have now shown $E_i^* A_{i+1} v = 0$ for $1 \leq i \leq D - 1$ and in particular $E_{D-1}^* A_D v = 0$. It follows $Ev \in E_D^* V$ for the case $\eta = -1$. We have now shown $Ev \in E_D^* V$ for all cases so $E \in (M; v)$. We now prove E, J form a basis for $(M; v)$. By Theorem 1.1 $(M; v)$ has dimension 2. We mentioned earlier $J \in (M; v)$. We show E, J are linearly independent. Recall E, J are pseudo primitive idempotents for $\tilde{\eta}, k$ respectively. We have $\tilde{\eta} \neq k$ by Proposition 7.2 so E, J are linearly independent in view of Lemma 6.5. \hfill \Box

Acknowledgements The initial work for this paper was done when the second author was an Honorary Fellow at the University of Wisconsin-Madison (July-December 2000) supported by the National Science Council, Taiwan ROC.

References

Paul Terwilliger
Department of Mathematics
University of Wisconsin
480 Lincoln Drive
Madison Wisconsin
USA 53706
Email: terwilli@math.wisc.edu

Chih-wen Weng
Department of Applied Mathematics
National Chiao Tung University
1001 Ta Hsueh Road
Hsinchu 30050
Taiwan ROC
Email: weng@math.nctu.edu.tw